A. Infinity vs. DNE

Recall from section 1.3 that $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ DNE since the function value kept increasing. Now we will be more descriptive; any value that keeps increasing is said to approach infinity (∞), and any value that keeps decreasing is said to approach negative infinity $(-\infty)$.

Examples:
1.) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ using the graph and table method.

	$\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}$
x	y
-0.1	
-0.01	
-0.001	

$\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}$	
x	y
0.1	
0.01	
0.001	

2.) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x}$ using the graph and table method.

| | $\lim _{x \rightarrow 0^{-}} \frac{1}{x}$ | | $\lim _{x \rightarrow 0^{+}} \frac{1}{x}$
 x | y | y |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -0.1 | | x | | | |
| -0.01 | | | | | |
| -0.001 | | 0.1 | | | |

B. A Quick Review of Asymptotes

An asymptote is an imaginary line that the graph of a function approaches as the function approaches a restricted number in the domain or as it approaches infinity.

Locating Vertical Asymptotes

If $f(x)=\frac{p(x)}{q(x)}$ is a rational function, $p(x)$ and $q(x)$ have no common factors and n is a zero of $q(x)$, then the line $x=n$ is a vertical asymptote of the graph of $f(x)$.

Locating Horizontal Asymptotes.

$$
\text { Let } f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}
$$

i. If $\mathrm{n}<\mathrm{m}$, then $y=0$ is the horizontal asymptote
ii. If $\mathrm{n}=\mathrm{m}$, then the line $y=\frac{a_{n}}{b_{m}}$ is the horizontal asymptote
iii. If $\mathrm{n}>\mathrm{m}$, there is NO horizontal asymptote. (But there will be a slant/oblique asymptote.)

Examples: For the following rational functions, find the vertical and horizontal asymptotes if any:
1.) $f(x)=\frac{16 x^{2}}{4 x^{2}+1}$
2.) $g(x)=\frac{x+8}{x^{2}-64}$
3.) $h(x)=\frac{x^{3}+7}{5 x-2}$
4.) $k(x)=\frac{x^{2}-2 x}{2-3 x+x^{2}}$

C. Vertical Asymptotes

Vertical asymptotes occur when $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$
The asymptote will be the line $x=a$.
Example: Evaluate the limit, find the asymptote and graph the function
1.) $\lim _{x \rightarrow 2} \frac{x+1}{3 x-6}$
2.) $\lim _{x \rightarrow-4^{+}} \frac{x+6}{x+4}$
3.) $\lim _{x \rightarrow-4^{-}} \frac{x+6}{x+4}$

D. Limits as Infinity

A limit as the domain approaches infinity: $\lim _{x \rightarrow \infty} f(x)$

Finding Limits as Infinity of Rational Functions

i. Determine the degree of the denominator. (Let's say degree $=P$)
ii. Multiply both the numerator and denominator by $\frac{1}{x^{P}}$.
iii. Distribute/clean up algebra and continue evaluating the limit.

Example: Evaluate the limit.
1.) $\lim _{x \rightarrow \infty} \frac{6 x^{2}+2 x+7}{8 x+2 x^{2}}$
2.) $\lim _{x \rightarrow \infty} \frac{x^{3}+4 x-2}{6-2 x^{2}}$
3.) $\lim _{x \rightarrow \infty} \frac{2 x}{2 x^{2}+x-1}$

Conclusion: For positive integers M and N such that $M>N$

1. Degree of the Numerator $=$ Degree of the Denominator
$\lim _{x \rightarrow \infty} \frac{\text { Polynomail of Degree } M}{\text { Polynomail of Degree } M}=$ Ratio of Leading Coeficients
2. Degree of the Numerator $>$ Degree of the Denominator
$\lim _{x \rightarrow \infty} \frac{\text { Polynomail of Degree } M}{\text { Polynomail of Degree } N}= \pm \infty$
3. Degree of the Numerator < Degree of the Denominator
$\lim _{x \rightarrow \infty} \frac{\text { Polynomail of Degree } N}{\text { Polynomail of Degree } M}=0$

More Example: Evaluate the limit.
1.) $\lim _{x \rightarrow \infty} \frac{3 x-10}{\sqrt{16 x^{2}+5}}$
2.) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}+x+1}}{2 x+1}$
3.) Find the horizontal asymptotes for the curve $y=\frac{12 x}{\left(x^{4}+1\right)^{\frac{1}{4}}}$
4.) Find the vertical asymptotes for the curve $y=\frac{4 x^{3}}{x+2}$
$\lim \tan x$
5.) $\quad x \rightarrow \frac{\pi}{2}-$
6.) $\lim _{x \rightarrow \frac{\pi}{2}^{+}} \tan x$
7.) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+7 x+1}-x$

