A. Slope of Secant Functions

Recall: Slope $=\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. From this we are able to derive:
Slope of the Secant Line to a Function: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or $m=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$
Examples:

1. a.) Find the slope of the secant line to the function $f(x)=\sqrt{x}$ between $x=1$ and $x=9$
b.) Find the equation of the secant line to the function $f(x)=\sqrt{x}$ between $x=1$ and $x=9$
2.) Estimate the equation of the tangent line to the function $y=x^{2}$ at the point $(1,1)$ by calculating the equation of the secant line between $x=1$ and $x=1.1$, between $x=1$ and $x=1.01$ and between $x=1$ and $x=1.001$.

A generalization of the previous example gives the definition: Slope $=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

The slope of the tangent line can alternatively be calculated in the following way:

In order to get the two points P_{1} and P_{2} as close together as possible, we need for the space $\mathrm{h} \rightarrow 0$. So, the slope between P_{1} and P_{2} is:

$$
m=\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{(x+h)-(x)}=\frac{f(x+h)-f(x)}{h}
$$

but as the space $h \rightarrow 0$, we have

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

B. Definition of Derivative

The definition of a derivative (a.k.a. the slope of the tangent function) is given as:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { or } \quad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

*Note: In this section we will use the DEFINITION OF THE DERIVATE to calculate all derivatives. (This means we will be doing it the long way!)

Examples:
1.) Find the equation of the tangent line to the function $f(x)=x^{2}-3 x+1$ where $x=5$.
2.) A person standing on top of a 200 ft tall building throws a ball into the air with a velocity of $96 \mathrm{ft} / \mathrm{sec}$. The function $s(t)=-16 t^{2}+96 t+200$ gives the ball's height above ground, t seconds after it was thrown. Find the instantaneous velocity of the ball at $t=2$ seconds
3.) The position of a particle is given by the values of the table.

t (seconds)	0	1	2	3	4	5
s (feet)	0	14	47	51	86	103

Find the average velocity for the time period beginning when $\mathrm{t}=2$ and lasting

1. 3 s (i.e. for the time interval $[2,5]$)
2. 2 s
3. 1 s
4.) (a) The equation of the tangent line to the graph of $y=g(x)$ at $x=3$ if $g(3)=-3$ and $g^{\prime}(3)=7$ is $y=$
(b) If the tangent line to $y=f(x)$ at $(2,10)$ passes through the point $(0,4)$, then $f(2)=$
and $f^{\prime}(2)=$
5.) $\lim _{h \rightarrow 0} \frac{\sqrt{81+h}-9}{h}$ represents the derivative of the function $f(x)=\sqrt{x}$ at the number $a=$
6.) $\lim _{x \rightarrow 6} \frac{2^{x}-64}{x-6}$ represents the derivative of the function $f(x)=_$at the number $a=$
