A. Definition of the Derivative

$$
\text { For a function } f(x) \text { the derivative is } f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Examples: Using the definition of the derivative, find the derivative of the following functions:
1.) $f(x)=x^{2}+3 x-2$
2.) $g(x)=\sqrt{x}+4$
3.) $k(x)=\frac{1}{2 x+1}$
4.) Consider the graph for the function $f(x)$

Estimate the following:
a.) $f^{\prime}(A)=$
b.) $f^{\prime}(B)=$
c.) $f^{\prime}(C)=$
d.) $f^{\prime}(D)=$
e.) $f^{\prime}(E)=$
f.) $f^{\prime}(F)=$

B. Differentiability

DEFN: We say that

- $\quad f(x)$ is differentiable at a if $f^{\prime}(a)$ exists
- $\quad f(x)$ is differentiable on (a, b) if it is differentiable on every point in (a, b)

Theorem: If f is differentiable at a, then f is continuous at a

Non differentiable functions:

i. Any function with a "corner" or cusp

ii. Any function with a discontinuity

iii. Any function with a vertical tangent

C. Notation

Function	
$y=$	Derivative
	$y^{\prime}=$
$f(x)$	$f^{\prime}(x)$
$F(x)$	$f(x)$

D. Higher Derivatives

(i.e. Finding the "derivative of a derivative" or taking the derivative multiple times.)
$\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}$

Example:
1.) For the function $f(x)=x^{2}+3 x-2$, find the second derivative. (Recall from previous that $f^{\prime}(x)=2 x+3$)

More Examples:

1.)

2.) Evaluate the limit $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$

Identify the graphs A (blue), B (red) and C (green) as the graphs of a function and its derivatives.
a.) The graph of the function is:
b.) The graph of the function's first derivative is:
c.) The graph of the function's second derivative is:
3.) Evaluate the limit $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+36}-6}{x^{2}}$

