Sec 2.2

The Derivative of a Function

A. Definition of the Derivative

For a function
$$f(x)$$
 the derivative is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Examples: Using the definition of the derivative, find the derivative of the following functions: 1.) $f(x) = x^2 + 3x - 2$

 $2.) \quad g(x) = \sqrt{x} + 4$

$$k(x) = \frac{1}{2x+1}$$

4.) Consider the graph for the function f(x)

Estimate the following:

- a.) f'(A) =b.) f'(B) =c.) f'(C) =d.) f'(D) =
- e.) f'(E) = f.) f'(F) =

B. Differentiability

DEFN: We say that

- f(x) is differentiable at a if f'(a) exists
- f(x) is differentiable on (a, b) if it is differentiable on every point in (a, b)

<u>Theorem</u>: If f is differentiable at a , then f is continuous at a

Non differentiable functions:

i. Any function with a "corner" or cusp

ii. Any function with a discontinuity

iii. Any function with a vertical tangent

C. Notation

Function	Derivative
y =	y' = $\frac{dy}{dx} =$ (Leibniz notation)
f(x)	f'(x)
F(x)	f(x)

D. Higher Derivatives

(i.e. Finding the "derivative of a derivative" or taking the derivative multiple times.)

$$\frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{d^2y}{dx^2} = y'' = f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

Example:

1.) For the function $f(x) = x^2 + 3x - 2$, find the second derivative. (Recall from previous that f'(x) = 2x + 3)

More Examples:

Identify the graphs A (blue), B(red) and C (green) as the graphs of a function and its derivatives.

- a.) The graph of the function is:
- b.) The graph of the function's first derivative is:
- c.) The graph of the function's second derivative is:

3.) Evaluate the limit $\lim_{x \to 0} \frac{\sqrt{x^2 + 36} - 6}{x^2}$