A. Properties and Formulas (The short way – Yeah!)

1. Basic Functions

Function	Derivative
f(x) = c (Constant)	f'(x) = 0
f(x) = x	f'(x)=1
f(x) = cx	f'(x) = c
$f(x) = x^n$	$f'(x) = nx^{n-1}$
$f(x) = cx^n$	$f'(x) = cnx^{n-1}$
$f(x) = c \cdot g(x)$	$f'(x) = c \cdot g'(x)$
f(x) = g(x) + h(x)	f'(x) = g'(x) + h'(x)
f(x) = g(x) - h(x)	f'(x) = g'(x) - h'(x)

Note: For the function $f(x) = g(x) \cdot h(x)$ we CAN NOT say that $f'(x) = g'(x) \cdot h'(x)$ For the function $f(x) = \frac{g(x)}{h(x)}$ we CAN NOT say that $f'(x) = \frac{g'(x)}{h'(x)}$

2. Trigonometric Functions

Function	Derivative
$f(x) = \sin(x)$	$f'(x) = \cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$
$f(x) = \tan(x)$	$f'(x) = \sec^2(x)$
$f(x) = \csc(x)$	$f'(x) = -\csc(x)\cot(x)$
$f(x) = \sec(x)$	$f'(x) = \sec(x)\tan(x)$
$f(x) = \cot(x)$	$f'(x) = -\csc^2(x)$

Examples: Find and LABEL the derivatives of each of the following functions.

1.)
$$f(x) = 8$$

2.)
$$g(x) = 8x$$

3.)
$$k(x) = x^2$$

4.)
$$h(x) = 5x^3$$

5.)
$$v(r) = \frac{3}{4} \pi r^3$$

6.)
$$q(y) = y$$

7.)
$$m(x) = \sqrt{x}$$

8.)
$$a(x) = 4x^{\frac{3}{2}}$$

$$9.) v(t) = \frac{1}{t}$$

10.)
$$d(x) = \frac{1}{x^3}$$

11.)
$$p(x) = \frac{x^3 + 4x^2}{x}$$

12.)
$$d(x) = (x+3)^2$$

More Examples

13.)
$$f(x) = x^3 + 4x^2 - 2x + 4$$
 Find $f''(1)$

14.)
$$g(t) = \frac{4t^2 + t + 5}{\sqrt{t}}$$
 Find $g''(t)$

15.)
$$h(x) = x^5 - 2x^4 + 3x^3 - x - 6$$
 Find the first 5 derivatives of the function.

B. Normal and Tangent Lines to a Function

Normal Line: A line that is perpendicular to the tangent line.

Examples:

1.) Find the tangent and the normal lines to the function $f(x) = 4\cos(x)$ at $x = \frac{\pi}{3}$

2.) Find the horizontal tangent lines (lines with slope = 0) to the function $f(x) = 2x^3 + 3x^2 - 120x + 23$

C. Applications to Position, Velocity and Acceleration

If the motion/position function of a particle is known, we can find the velocity and acceleration functions in the following way.

• If the **position** of a particle is given by f(x), then the **velocity** of the particle is given by f'(x)

• If the **velocity** of a particle is given by g(x), then the **acceleration** of the particle is given by g'(x) (We can also say that If the position of a particle is given by f(x), then the acceleration of the particle is given by f''(x), the second derivative of the motion function.)

Alternative notation:

- **Position** of a particle S(t)
- **Velocity** of a particle v(t)
- Acceleration of a particle a(t)

Then
$$v(t) = s'(t)$$
 And $a(t) = v'(t) = s''(t)$

Example:

- 1.) A particle's **position** is described by the function $s(t) = 3t^3 144t$. (t is measures in seconds and s(t) in feet.)
- a. Find the velocity function.
- b. Find the acceleration function.
- c. Find the acceleration after 9 seconds.
- d. Find the acceleration when the velocity is 0.

2.) A particle's position is described by the function $f(t) = t^3 - 9t^2 + 15t + 10$. (t is measures in seconds and $s(t)$ in
feet.)
a. Find the velocity function.

b. What is the velocity after 3 seconds?

c. When is the particle at rest?

d. When is the particle moving in a positive direction?

e. When is the particle slowing down?

f. Find the total distance traveled during the first 8 seconds.

3.) The area of a disc with radius r is $A(r) = \pi r^2$. Find the rate of change of the area of the disc with respect to its radius when r = 5.

More Examples:

1.) If
$$f(x) = (\frac{3}{4}x)^9$$
, then $f'(x) =$

2.) If
$$f(x) = \sqrt{x}(3x+0)$$
, then $f'(x) =$

3 a.) If
$$f(x) = 12\pi^2$$
, then $f'(x) =$

b.) If
$$f(x) = 12x^2$$
, then $f'(x) =$

c.) If
$$f(x) = 12\pi x^2$$
, then $f'(x) =$

- If a ball is thrown vertically upward from the roof of 64 foot building with a velocity of 32 ft/sec, its height after t seconds is $s(t) = 64 + 32t 16t^2$.
- a.) What is the maximum height the ball reaches?

b.) What is the velocity of the ball when it hits the ground (height 0)?

Evaluate the following limits:

$$\lim_{x \to 2} \frac{x^5 - 32}{x - 2} =$$

$$\lim_{x \to 1} \frac{x^{615} - 1}{x - 1} =$$