A. Properties and Formulas (The short way - Yeah!)

1. Basic Functions

Function	Derivative
$f(x)=c$ (Constant)	$f^{\prime}(x)=0$
$f(x)=x$	$f^{\prime}(x)=1$
$f(x)=c x$	$f^{\prime}(x)=c$
$f(x)=x^{n}$	$f^{\prime}(x)=n x^{n-1}$
$f(x)=c x^{n}$	$f^{\prime}(x)=c n x^{n-1}$
$f(x)=c \cdot g(x)$	$f^{\prime}(x)=c \cdot g^{\prime}(x)$
$f(x)=g(x)+h(x)$	$f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)$
$f(x)=g(x)-h(x)$	$f^{\prime}(x)=g^{\prime}(x)-h^{\prime}(x)$

Note: For the function $f(x)=g(x) \cdot h(x)$ we CAN NOT say that $f^{\prime}(x)=g^{\prime}(x) \cdot h^{\prime}(x)$
For the function $f(x)=\frac{g(x)}{h(x)}$ we CAN NOT say that $f^{\prime}(x)=\frac{g^{\prime}(x)}{h^{\prime}(x)}$

2. Trigonometric Functions

Function	Derivative
$f(x)=\sin (x)$	$f^{\prime}(x)=\cos (x)$
$f(x)=\cos (x)$	$f^{\prime}(x)=-\sin (x)$
$f(x)=\tan (x)$	$f^{\prime}(x)=\sec ^{2}(x)$
$f(x)=\csc (x)$	$f^{\prime}(x)=-\csc (x) \cot (x)$
$f(x)=\sec (x)$	$f^{\prime}(x)=\sec (x) \tan (x)$
$f(x)=\cot (x)$	$f^{\prime}(x)=-\csc ^{2}(x)$

Examples: Find and LABEL the derivatives of each of the following functions.
1.) $f(x)=8$
2.) $g(x)=8 x$
3.) $k(x)=x^{2}$
4.) $h(x)=5 x^{3}$
5.) $v(r)=\frac{3}{4} \pi r^{3}$
6.) $q(y)=y$
7.) $m(x)=\sqrt{x}$
8.) $a(x)=4 x^{\frac{3}{2}}$
9.) $v(t)=\frac{1}{t}$
10.) $d(x)=\frac{1}{x^{3}}$
11.) $p(x)=\frac{x^{3}+4 x^{2}}{x}$
12.) $d(x)=(x+3)^{2}$

More Examples
13.) $f(x)=x^{3}+4 x^{2}-2 x+4$ Find $f^{\prime \prime}(1)$
14.) $g(t)=\frac{4 t^{2}+t+5}{\sqrt{t}} \quad$ Find $g^{\prime \prime}(t)$
15.) $h(x)=x^{5}-2 x^{4}+3 x^{3}-x-6 \quad$ Find the first 5 derivatives of the function.

B. Normal and Tangent Lines to a Function

Normal Line: A line that is perpendicular to the tangent line.

Examples:
1.) Find the tangent and the normal lines to the function $f(x)=4 \cos (x)$ at $x=\frac{\pi}{3}$
2.) Find the horizontal tangent lines (lines with slope $=0$) to the function $f(x)=2 x^{3}+3 x^{2}-120 x+23$

C. Applications to Position, Velocity and Acceleration

If the motion/position function of a particle is known, we can find the velocity and acceleration functions in the following way.

- If the position of a particle is given by $f(x)$, then the velocity of the particle is given by $f^{\prime}(x)$
- If the velocity of a particle is given by $g(x)$, then the acceleration of the particle is given by $g^{\prime}(x)$ (We can also say that If the position of a particle is given by $f(x)$, then the acceleration of the particle is given by $f^{\prime \prime}(x)$, the second derivative of the motion function.)

Alternative notation:

- Position of a particle $S(t)$
- Velocity of a particle $v(t)$
- Acceleration of a particle $a(t)$

Then $v(t)=s^{\prime}(t) \quad$ And $\quad a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$
Example:
1.) A particle's position is described by the function $s(t)=3 t^{3}-144 t$. (t is measures in seconds and $s(t)$ in feet.)
a. Find the velocity function.
b. Find the acceleration function.
c. Find the acceleration after 9 seconds.
d. Find the acceleration when the velocity is 0 .
2.) A particle's position is described by the function $f(t)=t^{3}-9 t^{2}+15 t+10$. (t is measures in seconds and $s(t)$ in feet.)
a. Find the velocity function.
b. What is the velocity after 3 seconds?
c. When is the particle at rest?
d. When is the particle moving in a positive direction?
e. When is the particle slowing down?
f. Find the total distance traveled during the first 8 seconds.
3.) The area of a disc with radius r is $A(r)=\pi r^{2}$. Find the rate of change of the area of the disc with respect to its radius when $r=5$.

More Examples:

1.) If $f(x)=\left(\frac{3}{4} x\right)^{9}, \quad$ then $f^{\prime}(x)=$
2.) If $f(x)=\sqrt{x}(3 x+0)$, then $f^{\prime}(x)=$

3 a.) If $f(x)=12 \pi^{2}$, then $f^{\prime}(x)=$
b.) If $f(x)=12 x^{2}$, then $f^{\prime}(x)=$
c.) If $f(x)=12 \pi x^{2}$, then $f^{\prime}(x)=$

4 If a ball is thrown vertically upward from the roof of 64 foot building with a velocity of $32 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=64+32 t-16 t^{2}$.
a.) What is the maximum height the ball reaches?
b.) What is the velocity of the ball when it hits the ground (height 0)?

Evaluate the following limits:
a.) $\lim _{x \rightarrow 2} \frac{x^{5}-32}{x-2}=$
b.) $\lim _{x \rightarrow 1} \frac{x^{615}-1}{x-1}=$

