## A. Product Rule

$$
f(x)=g(x) \cdot h(x) \text { then } f^{\prime}(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)
$$

Alternative Notation: $\quad \frac{d(g \cdot h)}{d x}=\left(\frac{d g}{d x}\right) \cdot(h)+(g) \cdot\left(\frac{d g}{d x}\right)$
In Plain English: The derivative of the product of two functions (which we will call the "first" function and the "second" function) is equal to the derivative of the first, times the second, plus the first, times derivative of the second.

Examples
1.) $f(x)=\left(2 x^{3}+8 x\right) \cdot\left(5 x^{4}+17\right)$

We see that $f(x)$ consists of the product of two smaller functions, in this case $\underline{\left(2 x^{3}+8 x\right)}$ "the first" and $\underline{\left(5 x^{4}+17\right)}$ "the second". So, the derivative then is:


Note: You should leave the answer in this form unless we are asked to "clean up" Again, do not forget to label your derivative
2.) $g(x)=x \cdot \sin (x)$

We see that $g(x)$ consists of the product of two smaller functions, in this case $\underline{x}$ "the first" and $\sin (x)$ "the second". So, the derivative then is: $g^{\prime}(x)=(1) \cdot \sin (x)+x \cdot \cos (x)=\sin (x)+x \cdot \cos (x)$

More Examples: Find and LABEL the derivatives of each of the following functions.
1.) $f(x)=\left(x^{4}+\sqrt{x}\right) \cdot(5 x-1)$
2.) $f(x)=x^{2} \cos (x)$
3.) $f(x)=\sin (x) \cos (x)$

## B. Quotient Rule

$$
f(x)=\frac{g(x)}{h(x)} \text { then } f^{\prime}(x)=\frac{g^{\prime}(x) \cdot h(x)-g(x) \cdot h^{\prime}(x)}{[h(x)]^{2}}
$$

Book Notation: $\frac{d\left(\frac{g}{h}\right)}{d x}=\frac{\left(\frac{d g}{d x}\right) \cdot(h)-(g) \cdot\left(\frac{d g}{d x}\right)}{h^{2}}$
In Plain English: The derivative of the quotient of two functions (which we will call the "top" function and the "bottom" function) is equal to the derivative of the top, times the bottom, minus the top, times derivative of the bottom, all over the bottom squared.

Examples
1.) $f(x)=\frac{\left(2 x^{3}+8 x\right)}{\left(5 x^{4}+17\right)}$

We see that $f(x)$ consists of the quotient of two smaller functions, in this case $\underline{\left(2 x^{3}+8 x\right)}$ "the top" and $\underline{\left(5 x^{4}+17\right)}$ "the bottom". So, the derivative then is:


Note: You should leave the answer in this form unless we are asked to "clean up"
Again, do not forget to label your derivative
2.) $g(x)=\frac{x}{\sin (x)}$

We see that $g(x)$ consists of the product of two smaller functions, in this case $x$ "the top" and $\sin (x)$ "the bottom".
So, the derivative then is: $g^{\prime}(x)=\frac{(1) \cdot \sin (x)-x \cdot \cos (x)}{[\sin (x)]^{2}}=\frac{\sin (x)-x \cdot \cos (x)}{\sin ^{2}(x)}$

More Examples: Find and LABEL the derivatives of each of the following functions.
1.) $f(x)=\frac{\left(x^{4}-8 x\right)}{(2 x-1)}$
2.) $g(x)=\frac{\sin x}{\cos x}$
3.) $l(x)=\frac{\sin x}{\sqrt{x}} \cdot\left(x^{2}+2 x\right)$
4.) Suppose $f(\pi / 6)=7$ and $f^{\prime}(\pi / 6)=-5$, and let $g(x)=f(x) \cos x$ and $h(x)=\frac{\sin x}{f(x)}$ $g^{\prime}(\pi / 6)=$

$$
h^{\prime}(\pi / 6)=
$$

5.)

| $x$ | 1 | 0 | 7 | -2 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | -5 | -1 | -407 | 7 | 1 |
| $g(x)$ | -3 | -2 | -9 | 0 | -1 |
| $f^{\prime}(x)$ | -7 | -2 | -163 | -10 | -3 |
| $g^{\prime}(x)$ | -1 | -1 | -1 | -1 | -1 |

a. $(f g)^{\prime}(-1)$
b. $\quad f(-1) /(g(-1)+5)$
c. $(f+g)^{\prime}(-1)$
d. $(f-g)^{\prime}(-1)$
e. $(f g)^{\prime}(7)$
f. $\left(\frac{g}{f}\right)^{\prime}(0)$
6.) The graphs of the function $f$ (given in blue) and $g$ (given in red) are plotted above. Suppose that $u(x)=f(x) g(x)$ and $v(x)=f(x) / g(x)$. Find each of the following:
$u^{\prime}(1)=$
$v^{\prime}(1)=$

$f$ is the bottom function
$g$ is the top function
7.) Given that

$$
\begin{gathered}
f(x)=x^{12} h(x) \\
h(-1)=3 \\
h^{\prime}(-1)=6
\end{gathered}
$$

Calculate $f^{\prime}(-1)$

