Sec 2.4

A. Product Rule

$$f(x) = g(x) \cdot h(x) \text{ then } f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

Alternative Notation:

$$\frac{d(g \cdot h)}{dx} = \left(\frac{dg}{dx}\right) \cdot (h) + (g) \cdot \left(\frac{dg}{dx}\right)$$

In Plain English: The derivative of the product of two functions (which we will call the "first" function and the "second" function) is equal to the **derivative of the first, times the second, plus the first, times derivative of the second**.

Examples

1.)
$$f(x) = (2x^3 + 8x) \cdot (5x^4 + 17)$$

We see that f(x) consists of the product of two smaller functions, in this case $(2x^3 + 8x)$ "the first" and $(5x^4 + 17)$ "the second". So, the derivative then is:

Note: You should leave the answer in this form unless we are asked to "clean up" Again, do not forget to label your derivative

2.) $g(x) = x \cdot \sin(x)$

We see that g(x) consists of the product of two smaller functions, in this case \underline{x} "the first" and $\underline{\sin(x)}$ "the second". So, the derivative then is: $g'(x) = (1) \cdot \sin(x) + x \cdot \cos(x) = \sin(x) + x \cdot \cos(x)$

More Examples: Find and LABEL the derivatives of each of the following functions.

1.)
$$f(x) = (x^4 + \sqrt{x}) \cdot (5x - 1)$$

 $2.) \quad f(x) = x^2 \cos(x)$

3.) $f(x) = \sin(x)\cos(x)$

B. Quotient Rule

$$f(x) = \frac{g(x)}{h(x)} \operatorname{then} f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{[h(x)]^2}$$

 $\frac{d\left(\frac{g}{h}\right)}{dx} - \frac{\left(\frac{dg}{dx}\right) \cdot (h) - (g) \cdot \left(\frac{dg}{dx}\right)}{dx}$

Book Notation:

In Plain English: The derivative of the quotient of two functions (which we will call the "top" function and the "bottom" function) is equal to the **derivative of the top**, **times the bottom**, **minus the top**, **times derivative of the bottom**, **all over the bottom squared**.

Examples

1.)
$$f(x) = \frac{(2x^3 + 8x)}{(5x^4 + 17)}$$

We see that f(x) consists of the quotient of two smaller functions, in this case $(2x^3 + 8x)$ "the top" and $(5x^4 + 17)$ "the bottom". So, the derivative then is:

Note: You should leave the answer in this form unless we are asked to "clean up" Again, do not forget to label your derivative

2.)
$$g(x) = \frac{x}{\sin(x)}$$

We see that g(x) consists of the product of two smaller functions, in this case \underline{x} "the top" and $\underline{\sin(x)}$ "the bottom". So, the derivative then is: $g'(x) = \frac{(1) \cdot \sin(x) - x \cdot \cos(x)}{[\sin(x)]^2} = \frac{\sin(x) - x \cdot \cos(x)}{\sin^2(x)}$ More Examples: Find and LABEL the derivatives of each of the following functions.

1.)
$$f(x) = \frac{(x^4 - 8x)}{(2x - 1)}$$

2.)
$$g(x) = \frac{\sin x}{\cos x}$$

3.)
$$l(x) = \frac{\sin x}{\sqrt{x}} \cdot \left(x^2 + 2x\right)$$

4.) Suppose
$$f(\pi/6) = 7$$
 and $f'(\pi/6) = -5$, and let $g(x) = f(x)\cos x$ and $h(x) = \frac{\sin x}{f(x)}$
 $g'(\pi/6) =$

 $h'(\pi/6) =$

-	١
5.)

X	1	0	7	-2	-1
f(x)	-5	-1	-407	7	1
g(x)	-3	-2	-9	0	-1
f'(x)	-7	-2	-163	-10	-3
g'(x)	-1	-1	-1	-1	-1

a. (fg)'(-1)

b.
$$f(-1)/(g(-1)+5)$$

c. (f+g)'(-1)

d.
$$(f-g)'(-1)$$

e.
$$(fg)'(7)$$

f. $\left(\frac{g}{f}\right)'(0)$

6.) The graphs of the function f (given in blue) and g (given in red) are plotted above. Suppose that u(x) = f(x)g(x) and v(x) = f(x)/g(x). Find each of the following:

u'(1) =

$$v'(1) =$$

7.) Given that

$$f(x) = x^{12}h(x)$$
$$h(-1) = 3$$
$$h'(-1) = 6$$

Calculate f'(-1)

f is the bottom function g is the top function