Sec 2.5

Chain Rule

A. The Chain Rule

$$[h(g(x))]' = h'(g(x)) \cdot g'(x)$$

Alternative Notation:

$$f(x) = (h \circ g)(x) = h(g(x)) \text{ then } f'(x) = [h'(g(x))] \cdot [g'(x)]$$
$$[h(g(x))]' = \frac{d(h(g))}{dx} = \left(\frac{dh}{dg}\right) \cdot \left(\frac{dg}{dx}\right)$$

In Plain English: First, identify which function is on the "outside" and which is on the "inside". (For the composition $(f \circ g)(x) = f(g(x))$ we say that f is on the "outside" and g is on the "inside".) The derivative of this composition is equal to the derivative of the outside (leave the inside alone) times the derivative of the inside.

Examples

1.)
$$f(x) = \sin(5x^5)$$

First, let us identify which is the "outside" and which is on the "inside": Here sin(...) is the "outside" (i.e. "sin of something") and $5x^5$ is the "inside".

Derivative of the "outside" is $\cos(...)$, and if we the leave the inside alone, this will be $\cos(5x^5)$ Derivative of the "inside" is $25x^4$

inside alone)

inside

Note: This style of answer should only be "cleaned up" if you are given specific instructions to so (or if you have to compare it to a list of multiple choice answers)! Again, do not forget to label your derivative

More Examples

2.)
$$g(x) = \sin^2(x) = [\sin(x)]^2$$

We see that $g(x)$ consists of $[\dots]^2$ as the "outside" and $\frac{\sin(x)}{2}$ as the "inside".
So, the derivative of the "outside" is $2[\dots]$ and derivative of the "inside" is $\cos(x)$

$$\Rightarrow g'(x) = 2[\sin(x)] \cdot [\cos(x)]$$

Examples: Find and LABEL the derivatives of each of the following functions.

1.)
$$f(x) = \tan(6x^3)$$

2.)
$$k(x) = \tan(\sin x)$$

$$l(x) = \sqrt{x^2 + 1}$$

4.)
$$f(x) = (x^2 + 2x)^8$$

$$5.) \quad r(s) = \frac{1}{\sqrt[3]{s^4 + s}}$$

B. Combinations of Product, Quotient and Chain Rule

In many problems we need to use a combination of the Product, Quotient and Chain Rule to find a derivative. Here we will work through lots of examples.

Examples: Find and LABEL the derivatives of each of the following functions. Do not clean up unless otherwise indicated.

1.) $g(x) = \sin(x^2) \cdot (8x^3 - 1)$

2.)
$$f(x) = \sin^3(x^2)$$
.

3.)
$$g(x) = (x - \cos^2(x))^4$$

4.)
$$r(\theta) = \frac{\cos(2\theta - 4\pi)}{\theta^2}$$

5.)
$$a(x) = x^2 \cdot \sqrt{2x^3 + 1}$$

6.)
$$f(x) = \frac{5x^3}{(x^2 + 5x)^3}$$

7.) If
$$f(x) = \cos(a^8 + x^8)$$
, then $f'(x) =$

8.) If
$$f(x) = \cos(x \sin x)$$
, find $f'(x) =$

9.) Let
$$F(x) = f(g(x))$$
, where $f(-7) = 2$, $f'(-7) = 2$, $f'(3) = 15$, $g(3) = -7$, and $g'(3) = -8$, find $F'(3)$

11.) Let $F(x) = f(x^6)$ and $G(x) = (f(x))^6$. You also know that $a^5 = 11$, f(a) = 2, f'(a) = 8, $f'(a^6) = 15$. Find F'(a)

and G'(a)