A. The Chain Rule

$$
[h(g(x))]^{\prime}=h^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Alternative Notation:

$$
\begin{aligned}
& f(x)=(h \circ g)(x)=h(g(x)) \text { then } f^{\prime}(x)=\left[h^{\prime}(g(x))\right] \cdot\left[g^{\prime}(x)\right] \\
& {[h(g(x))]^{\prime}=\frac{d(h(g))}{d x}=\left(\frac{d h}{d g}\right) \cdot\left(\frac{d g}{d x}\right)}
\end{aligned}
$$

In Plain English: First, identify which function is on the "outside" and which is on the "inside". (For the composition $(f \circ g)(x)=f(g(x))$ we say that f is on the "outside" and g is on the "inside".) The derivative of this composition is equal to the derivative of the outside (leave the inside alone) times the derivative of the inside.

Examples
1.) $f(x)=\sin \left(5 x^{5}\right)$

First, let us identify which is the "outside" and which is on the "inside": Here $\sin (. .$.$) is the "outside" (i.e. "sin of$ something") and $5 x^{5}$ is the "inside".

Derivative of the "outside" is $\cos (\ldots)$, and if we the leave the inside alone, this will be $\cos \left(5 x^{5}\right)$
Derivative of the "inside" is $25 x^{4}$

$$
f^{\prime}(x)=\underbrace{\left(\cos \left(5 x^{5}\right)\right)}_{\begin{array}{c}
\text { Derivative of the } \\
\text { outside (leave the } \\
\text { inside alone) }
\end{array}}
$$

Note: This style of answer should only be "cleaned up" if you are given specific instructions to so (or if you have to compare it to a list of multiple choice answers)!
Again, do not forget to label your derivative

More Examples
2.) $g(x)=\sin ^{2}(x)=[\sin (x)]^{2}$

We see that $g(x)$ consists of [...] ${ }^{2}$ as the "outside" and $\sin (x)$ as the "inside".
So, the derivative of the "outside" is $2[\ldots]$ and derivative of the "inside" is $\cos (x)$
$\Rightarrow \quad g^{\prime}(x)=2[\sin (x)] \cdot[\cos (x)]$

Examples: Find and LABEL the derivatives of each of the following functions.
1.) $f(x)=\tan \left(6 x^{3}\right)$
2.) $k(x)=\tan (\sin x)$
3.) $l(x)=\sqrt{x^{2}+1}$
4.) $f(x)=\left(x^{2}+2 x\right)^{8}$
5.) $r(s)=\frac{1}{\sqrt[3]{s^{4}+s}}$

B. Combinations of Product, Quotient and Chain Rule

In many problems we need to use a combination of the Product, Quotient and Chain Rule to find a derivative. Here we will work through lots of examples.

Examples: Find and LABEL the derivatives of each of the following functions. Do not clean up unless otherwise indicated.
1.) $g(x)=\sin \left(x^{2}\right) \cdot\left(8 x^{3}-1\right)$
2.) $f(x)=\sin ^{3}\left(x^{2}\right)$.
3.) $g(x)=\left(x-\cos ^{2}(x)\right)^{4}$
4.) $r(\theta)=\frac{\cos (2 \theta-4 \pi)}{\theta^{2}}$
5.) $a(x)=x^{2} \cdot \sqrt{2 x^{3}+1}$
6.) $f(x)=\frac{5 x^{3}}{\left(x^{2}+5 x\right)^{3}}$
7.) If $f(x)=\cos \left(a^{8}+x^{8}\right)$, then $f^{\prime}(x)=$
8.) If $f(x)=\cos (x \sin x)$, find $f^{\prime}(x)=$
9.) Let $F(x)=f(g(x))$, where $f(-7)=2, f^{\prime}(-7)=2, f^{\prime}(3)=15$, $g(3)=-7$, and $g^{\prime}(3)=-8$, find $F^{\prime}(3)$
10.) If f and g are the functions whose graphs are shown below, let $u(x)=f(g(x))$ and $v(x)=g(f(x))$.

Find $u^{\prime}(3)$
and $v^{\prime}(3)$
11.) Let $F(x)=f\left(x^{6}\right)$ and $G(x)=(f(x))^{6}$. You also know that $a^{5}=11, f(a)=2$, $f^{\prime}(a)=8, f^{\prime}\left(a^{6}\right)=15$.

Find $F^{\prime}(a)$
and $G^{\prime}(a)$

