Recall from the previous week, that when we take the derivative of $y=f(x)$ then $y^{\prime}=f^{\prime}(x)$ where $f(x)$ is a function in terms of x (i.e. the only variable in the function is x)

Example: If $y=x^{3}+2 x$ then $y^{\prime}=\frac{d y}{d x}=3 x^{2}+2$
So, in other words, to take a derivative this way, we have to have the equation solved for " y ".

Example: If $x=x^{3}+2 x-y$. Here we first have to solve for y . So $y=x^{3}+2 x-x \Rightarrow y=x^{3}+x$ then $y^{\prime}=\frac{d y}{d x}=3 x^{2}+1$

Example: If $y x=x^{3}+2 x y^{2}-y$. Again, we have to solve for y in order to take a derivative in the way that we have learnt in the preceding chapters. However, (as you can see in this case) it is not always easy/possible to do so.

HENCE: Implicit Differentiation!

A. Implicit Differentiation

Implicit Differentiation: Differentiation of a function where one variable (typically y) is not explicitly expressed a s a function of another variable (typically x).

Here's how it works:

- It is important to pay attention to the notation. If we are given an equation in terms of x and y , and asked to find y^{\prime} or $\frac{d y}{d x}$, we need to see that we are finding the derivative of \mathbf{y}, with respect to \mathbf{x}.
- We will treat both x and y like a variable, and take derivatives of each, but;
- When we take a derivative of a term containing " x " we will proceed as usual
- When we take a derivative of a term containing " y " we will proceed as usual AND then also multiply the derivative of that term by $\frac{d y}{d x}$ (or y^{\prime}).
- We will use product, quotient and chain rules as needed.
- After differentiating, solve for (i.e. isolate) y^{\prime} or $\frac{d y}{d x}$,

Example: Find $\frac{d y}{d x}$ for $x=x^{3}+y^{2}$.
$\frac{d(x)}{d x}=\frac{d\left(x^{3}\right)}{d x}+\frac{d\left(y^{2}\right)}{d x} \Rightarrow 1=3 x^{2}+2 y \cdot \frac{d y}{d x}$
Since we are trying to find $\frac{d y}{d x}$, isolate $\frac{d y}{d x}$ in our equation: $\quad 1-3 x^{2}=2 y \cdot \frac{d y}{d x} \Rightarrow \quad \frac{1-3 x^{2}}{2 y}=\frac{d y}{d x}$

Example: Find $\frac{d y}{d x}$ for $x=4 x^{3}+y^{2}-8 y$.
$\frac{d(x)}{d x}=\frac{d\left(4 x^{3}\right)}{d x}+\frac{d\left(y^{2}\right)}{d x}-\frac{d(8 y)}{d x} \Rightarrow 1=12 x^{2}+2 y \cdot \frac{d y}{d x}-8 \cdot \frac{d y}{d x}$
Since we are trying to find $\frac{d y}{d x}$, isolate $\frac{d y}{d x}$ in our equation:
$1-12 x^{2}=2 y \cdot \frac{d y}{d x}-8 \cdot \frac{d y}{d x} \Rightarrow 1-12 x^{2}=\frac{d y}{d x}(2 y-8) \Rightarrow \frac{1-12 x^{2}}{2 y-8}=\frac{d y}{d x}$

Example: Find y^{\prime} for $x=x^{3} y^{2}-3 y^{3}$. (Notice that in this problem we have $x^{3} y^{2}$ - a product of x and y . Here we will have to use the product rule.)

$$
\begin{aligned}
& \frac{d(x)}{d x}=\frac{d\left(x^{3} y^{2}\right)}{d x}-\frac{d\left(3 y^{3}\right)}{d x} \Rightarrow 1=\left[\left(3 x^{2}\right)\left(y^{2}\right)+\left(x^{3}\right)\left(2 y \cdot y^{\prime}\right)\right]-9 y^{2} \cdot y^{\prime} \\
& \Rightarrow 1-\left(3 x^{2}\right)\left(y^{2}\right)=\left(x^{3} \cdot 2 y\right) \cdot y^{\prime}-\left(9 y^{2}\right) \cdot y^{\prime} \Rightarrow 1-\left(3 x^{2}\right)\left(y^{2}\right)=y^{\prime}\left(x^{3} \cdot 2 y-9 y^{2}\right) \\
& \Rightarrow \frac{1-3 x^{2} y^{2}}{2 x^{3} y-9 y^{2}}=y^{\prime}
\end{aligned}
$$

Examples: Find $\frac{d y}{d x}$ for the following:
1.) $x^{2}+2 y^{2}-11=0$
2.) $y^{2} x-\frac{5 y}{x+1}+3 x=4$
3.) Find y^{\prime} for $2 y+5-x^{2}-y^{3}=0$ and evaluate at $(2,-1)$
4.) Find $\frac{d A}{d t}$ for $A=\pi r^{2}$
5.) Find $\frac{d V}{d t}$ for $V=\frac{1}{3} \pi r^{2} h$
6.) If $f(x)+x^{7}[f(x)]^{3}=11$ and $f(2)=6$, find $f^{\prime}(2)=$
7.) Use implicit differentiation to find an equation of the tangent line to the curve line to the curve $4 x^{2}-4 x y-1 y^{3}=84$ at the point $(1,-4)$ of the form $y=m x+b$ $m=$ \qquad and $b=$ \qquad

