Sec 2.8

A. Differentials

$$\frac{\Delta y}{\text{Slope}} = \frac{\Delta y}{\Delta x} \implies \frac{\Delta y}{\Delta x} \approx \frac{dy}{dx}$$
Slope of the tangent line = $\frac{dy}{dx}$

$$\Rightarrow \quad \frac{\Delta y}{\Delta x} \approx \frac{dy}{dx}$$
Also, $\frac{dy}{dx} = f'(x) \implies dy = [f'(x)] \cdot dx$

Example: Find the differential of y given that:

1.)
$$y = 5x^3$$

2.)
$$y = \frac{3x^2 + 4x - 5}{5\sin(x) + 2x}$$

Note:

$$\Delta x \approx dx \text{ and } \Delta y \approx dy$$

$$dx \approx \Delta x = (x + \Delta x) - (x)$$

$$dy \approx \Delta y = f(x + \Delta x) - f(x)$$

$$\Delta y$$

$$f(x + \Delta x) - f(x)$$

$$\Delta y$$

$$f(x + \Delta x) - f(x)$$

Example: $y = x^3$ 1a.) Calculate Δy for x = 2 to x = 2.01

b.) Calculate dy for x = 2 to x = 2.01

2.)
$$V = \frac{4}{3}\pi r^3$$
 (volume of a sphere)

a.) Use differentials to approximate the change in volume when going from r = 3ft to r = 2.8ft(Find dV: Start by finding $\frac{dV}{dr}$)

b.) Find the actual change in volume when going from r=3ft to r=2.8ft (Find ΔV)

B. Linearization

Definition: The linearization of a function f(x) at a fixed point a is given by the formula L(x) = f(a) + f'(a)(x-a)Slope of the tangent line = $m_T = f'(a)$

Examples:

1.) Find the linear approximation of $f(x) = \cos(5x)$ at $a = \frac{\pi}{2}$

2.) Use linearization techniques to approximate $\sqrt{16.1}$

More Examples:

3.) Find the linear approximation of $f(x) = \sqrt{4-x}$ at a = 0 and use it to approximate $\sqrt{3.9}$ and $\sqrt{4.1}$.

4.) Use a linear approximation to approximate 2.001⁶ as follows: The linearization L(x) to $f(x) = x^6$ at a = 2 can be written in the form L(x) = mx + bUsing this, the approximation for 2.001⁶ is

- 5.) The edge of a cube was found to be 60 cm with a possible error of 0.5 cm. Use differentials to estimate:
 - (a) the maximum possible error in the volume of the cube
 - (b) the relative error in the volume of the cube
 - (c) the percentage error in the volume of the cube

6.) A 13 foot ladder is leaning against a wall. If the top slips down the wall at a rate of 4 ft/s, how fast will the foot of the ladder be moving away from the wall when the top is 8 feet above the ground?