Sec 3.7

A. Indeterminate forms

If we have a limit of the form
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 where both $f(x) \to 0$ and $g(x) \to 0$, then we have the in determinant
form of type $\frac{0}{0}$
If we have a limit of the form $\lim_{x \to a} \frac{f(x)}{g(x)}$ where both $f(x) \to \infty$ and $g(x) \to \infty$ then we have the in determinant
form of type $\frac{\infty}{\infty}$

B. L'Hospital's Rule

Suppose that f(x) and g(x) are differentiable, $g'(x) \neq 0$ and that $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or that $\lim_{x \to a} \frac{f(x)}{g(x)} = \pm \frac{\infty}{\infty}$ (i.e. we have an in determinant form of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$), then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Examples:

$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2}$$

2.)
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3}$$

3.)
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

4.)
$$\lim_{x \to 0} \frac{\sin x}{1 + \cos x}$$

$$5.) \lim_{x \to 0} \frac{a^x - 5^x}{9x}$$

6.)
$$\lim_{x \to 0} \frac{1 + x - e^x}{3x^2}$$

$$\lim_{x \to 0} \frac{1 - e^{ax}}{x^7} =$$

$$\lim_{x \to 0} \frac{\sin(10x)}{\sin(bx)} =$$

9.)
$$\lim_{x \to 0^+} \frac{\ln x}{x^7}$$

So the idea is to be able to get your limit problem into the form: $\lim_{x \to a} \frac{f(x)}{g(x)}$ so you can use L'Hospital's Rule

If you have $f(x) \cdot g(x)$ and you check to make sure you get either $0 \cdot \infty$ or $\infty \cdot 0$ then you will need to rewrite it first....

you could either rewrite it as $\lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}} or \lim_{x \to a} \frac{g(x)}{\frac{1}{f(x)}}$	*always put the EASY function on the bottom!
---	--

10.) $\lim_{x \to 0} \cot 2x \sin 6x$

11.)
$$\lim_{x \to 0^+} x^4 \ln(x) =$$

$$\lim_{x \to \infty} x^5 e^{-x^4}$$

C. Other "Indeterminate" Forms

$$\infty - \infty$$
 (you will need to rewrite this as either $\frac{0}{0}$ or $\frac{\infty}{\infty}$)
*Try using fractions or factoring

$$\lim_{x \to 0} \left[\csc(ax) - \cot(ax) \right]$$

14.) $\lim_{x \to 0^+} x^x$

15.)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^{3x} =$$

16.)
$$\lim_{x \to 0} (1 - 7x)^{\frac{1}{x}} =$$