A. Absolute Maximum or Minimum / Extreme Values

A function $f(x)$ has an Absolute Maximum at $x=c$ if $f(c) \geq f(x)$ for every point x in the domain.
Similarly, $f(x)$ has an Absolute Minimum at $x=c$ if $f(c) \leq f(x)$ for every point x in the domain.

B. Local/Relative Maximum or Minimum Values

A function $f(x)$ has a Local Maximum at $x=c$ if $f(c) \geq f(x)$ for every point x that is near c .
A function $f(x)$ has a Local Minimum at $x=c$ if $f(c) \leq f(x)$ for every point x that is near c .

C. The Extreme Value Theorem

If $f(x)$ is continuous on a closed interval $[a, b]$ then $f(x)$ attains both a maximum and a minimum value on $[a, b]$

D. Fermat's Theorem

If $f(x)$ has a local maximum or minimum at c, and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

E. Critical Number

A critical number of a function $f(x)$, is a number c in the domain such that $f^{\prime}(c)=0$ or $f^{\prime}(c)$ DNE If $f(x)$ has a local maximum or minimum at c, then c is critical number of $f(x)$

E. Closed Interval Method

To find Absolute Maximum or Minimum of a continuous function $f(x)$ on a closed interval $[a, b]$:

1. Find the values of $f(x)$ at the critical numbers of $f(x)$ in (a, b).
2. Find the values of $f(x)$ at the endpoints a and b of the interval.
3. The largest of the values of step 1 and 2 is the Absolute Maximum
4. The smallest of the values of step 1 and 2 is the Absolute Minimum

Examples:

1.) Find the critical numbers for the following functions
a. $f(x)=2 x^{2}+9 x-2$
b. $f(x)=-2 x^{3}+33 x^{2}-60 x+11$
c. $f(x)=x^{4 / 5}(x-5)$
d. $f(x)=(6 x-2) e^{-6 x}$
2.) Consider the function $f(x)=3 x^{2}-6 x+8, \quad 0 \leq x \leq 10$.

The absolute maximum value of $f(x)$ (on the given interval) is \qquad and this occurs at X equals \qquad
and the absolute minimum of $f(x)$ (on the given interval) is \qquad and this occurs at X equals
3.) Consider the function $f(x)=2 x^{3}+18 x^{2}-162 x+9$ on the interval $-9 \leq x \leq 4$. Find the critical numbers and absolute minimum and maximum values.
4.) Consider the function $f(x)=x+2 \cos x$ on the interval $0 \leq x \leq \pi$. Find the absolute maximum and minimum of the function.
5.) Choose the best reason that the function $f(x)=x^{91}+x^{25}+x^{7}+13$ has neither a local maximum nor a local minimum.
(a) The function $f(x)$ is always positive.
(b) The derivative $f^{\prime}(x)$ is always negative.
(c) The derivative $f^{\prime}(x)$ is always positive.
(d) The highest power of x in $\mathrm{f}(\mathrm{x})$ is odd.

