Sec 4.6

A. The Newton's Method Formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Examples:

1.) Starting with $x_{0}=2$ find the third approximation x_{3} to the root of the equation $x^{3}-2 x-5=0$

n	x_{n}	$f\left(x_{n}\right)$	$f^{\prime}\left(x_{n}\right)$	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
0				
1				
2				
3				

2.) Starting with $x_{0}=1$ find the third approximation x_{3} to the root of the equation $\tan ^{-1}(x)=1-x$

n	x_{n}	$f\left(x_{n}\right)$	$f^{\prime}\left(x_{n}\right)$	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
0				
1				
2				
3				

To find these approximations using the calculator:
Let $\mathrm{Y} 1=f(x) \quad$ and let $\mathrm{Y} 2=f^{\prime}(x)$
Then in the HOME SCREEN type in x_{0} and press ENTER
Type in immediately after you hit ENTER: - Y1(Ans) / Y2(Ans) and press ENTER (Each time you press enter you will get the next approximation of the root.)
3. a.) Find the equation $f(x)$ that results in a solution of $\sqrt[4]{9}$
b.) Find the second, third and fourth approximations of the root to this function if $x_{0}=2$
4.) Find the fourth approximation x_{2} to the root of the equation $e^{-x}=2+x$

n	x_{n}			
0			$f_{n}\left(x_{n}\right)$	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
1				
2				

