A function $F(x)$ is called the anti-derivative of $f(x)$ if $F^{\prime}(x)=f(x)$

Basic rules of anti differentiation

In general: Reverse basic rules of differentiation.
$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$, when $n \neq-1$
$\int e^{x} d x=e^{x}+C$
$\int a^{x} d x=\frac{a^{x}}{\ln a}+C$
$\int \frac{1}{x} d x=\ln |x|+C$
$\int \frac{1}{1+x^{2}} d x=\arctan x+C$
$\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C$

$$
\begin{aligned}
& \int \cos x d x=\sin x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \sec ^{2} x d x=\tan x+C \\
& \int \csc ^{2} x d x=-\cot x+C \\
& \int \sec x \tan x d x=\sec x+C \\
& \int \csc x \cot x d x=-\csc x+C
\end{aligned}
$$

Important: *Always use proper notation!
*Don't forget +C

Examples: Find the anti derivative for each of the following:
1.) $f(x)=2 x^{3}-7 x^{2}+7 x-7$
2.) $g(x)=6 x^{\frac{1}{5}}-18 x^{\frac{4}{5}}$
3.) $h(x)=\sqrt[7]{x^{2}}+\frac{2}{x^{5}}+\frac{1}{x}$
4.) $k(x)=\frac{x^{4}+8 \sqrt{x}}{x^{2}}$
5.) $m(x)=10 \sin x+6 \cos x$.
6.) $k(x)=\frac{8}{1+x^{2}}$
7.) $k(x)=\frac{2}{\sqrt{1-x^{2}}}$
8.) Find the function $F(x)$ given that $f(x)=2 x^{7}-4 x^{3}$ and $F(0)=19$
9.) Find the function $f(x)$ given that $f^{\prime \prime}(x)=24 x^{2}+10, f(0)=5$ and $f^{\prime}(1)=2$
10.) A particle is moving with acceleration $a(t)=12 t+2$. Its position at time $t=0$ is $s(0)=11$ and its velocity at time $t=0$ is $v(0)=9$. What is its position at time $t=6$?

