Basic Number Theory

Summary of Important Facts for chapter 8:

- 1. Types of Numbers
 - a. Integers (Z)

b. Natural Numbers (N)

- c. Rational Numbers (Q)
 - i. All numbers that can be written as a fraction ³/₅ where a and b are integers and b≠0.
 - ii. $\binom{a}{b} \div \binom{c}{d} = \binom{a}{b} \times \binom{d}{c}$
- d. Irrational Numbers
 - i. Numbers which don't have terminating decimals or repeating decimals. For example, the numbers π and e are irrational.
 - ii. Simplifying a radical
 - iii. Rationalizing a radical
- e. Real Numbers (R)

These include all of the above. The only type of numbers which are not real are imaginary (ie: imaginary numbers have "i" in them)

- 2. Sequences
 - a. Arithmetic
 - i. The difference between each term is some constant number
 - ii. d = difference between each term
 - iii. $a_{n+1} = d + a_n$
 - b. Geometric
 - i. The difference between each term is not a constant number
 - ii. Each term is some constant multiple of the previous term.
 - iii. r =the common ratio between each term
 - iv. $a_{n+1} = r \cdot a_n$
 - c. Fibonacci
 - i. 1, 1, 2, 3, 5, 8, 13, ...
 - ii. $F_{n+1} = F_n + F_{n-1}$ (each term is the sum of the previous two)
 - d. Other

There is some other pattern.

For example: $1, 4, 9, 16, 25, 36, 49, \dots, n^2$

The nth term in the Sequence

The nth term in a sequence is denoted by a_n. Notice that the subscript is "n" since it is the nth term. There are two ways to write what a_n is. One way writes a_n in terms of "n". This means that you don't have to know what any of the previous terms are and can find a_n directly. The other way writes a_n in terms of the previous terms of the sequence. The advantage of this way is that you can easily see what the pattern of the sequence is.

1. Recursive Form: a_n is written in terms of the previous terms of the sequence

Assumptions: to find an we must have the previous terms

Examples:

$$a_n = a_{n-1} + 2$$

where and is the term before an

$$a_n = 2 \cdot a_{n-1}$$

$$a_n = a_{n-1} + (n-2)$$
 notice that you're adding 0, 1, 2, 3, etc to get the next term

2. Closed Form: a_n is written in terms of "n"

Assumptions: to find a we look to find a pattern which corresponds to the term number. In all examples, we assume that the first term is a.

Strategies:

- look at what must be added to get the next term
- look at the factors of each term
- try multiplying all terms by some number
- try adding some number to all terms

Examples:

4.
$$1, 3, 5, 7, 9, \dots \Rightarrow 2, 4, 6, 8, 10, \dots \Rightarrow 2 \cdot 1, 2 \cdot 2, 2 \cdot 3, 2 \cdot 4, 2 \cdot 5, \dots$$

$$a_n = 2n - 1$$

5.
$$2, 4, 8, 16, 32, \dots \Rightarrow 2^1, 2^2, 2^3, 2^4, 2^5, \dots$$

$$a_n = 2^n$$

6.
$$-1, -1, 0, 2, 5, 9, \dots \Rightarrow -2, -2, 0, 4, 10, 18, \dots \Rightarrow -2 \cdot 1, -1 \cdot 2, 0 \cdot 3, 1 \cdot 4, 2 \cdot 5, 3 \cdot 6, \dots$$

$$a_n = n(n-3)/2$$