Wafaa Shaban

WeBWorK assignment number Sec7.2 is due: 10/19/2010 at 11:30pm EDT.

The Volume V of a solid obtained by rotating a region about an axis:

Case a) If the rotation is about the x-axis or a line parallel to the x-axis, take vertical cross-sections, and $V = \int_a^b A(x) dx$

Case b) If the rotation is about the y-axis or a line parallel to the y-axis, take horizontal cross-sections, and $V = \int_a^b A(y) dy$

where $A = \pi (radius)^2$ if the cross-section is a disk, and $A = \pi(outer\ radius)^2 - \pi(inner\ radius)^2$ if the cross section is a washer.

In case a) the radius should be in terms of x. (Solve for y as a function of x). In case b) the radius should be in terms of y. (Solve for x as a function of y).

1. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.2.1.pg

Book Problem 1

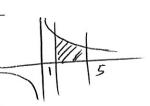
Find the volume V of the solid obtained by rotating the region bounded by the curves

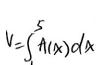
$$y = 7/x$$
, $x = 1$, $x = 5$, $y = 0$; about the x-axis.

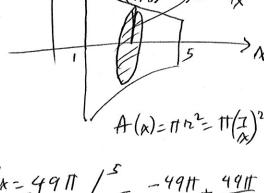
The volume
$$V = \int_1^5 \frac{491}{XL} dx$$
.

Therefore
$$V = \frac{4977}{5} \left(\frac{9}{5} \right)$$

2. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.2.3.pg







$$= \int_{1}^{5} \pi \left(\frac{49}{42}\right) dx = \frac{49\pi}{x} \Big/_{5}^{5} = -\frac{49\pi}{5} + \frac{49\pi}{1}$$

$$= 49\pi \left(1 - \frac{1}{5}\right) = 49\pi \left(\frac{4}{5}\right)$$

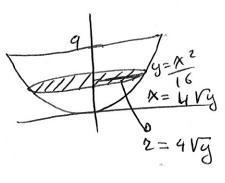
Book Problem 3

Find the volume V of the solid obtained by rotating the region bounded by the curves

$$x = 4\sqrt{y}$$
, $x = 0$, $y = 9$; about the y-axis.

$$y = \frac{x^2}{16}$$

$$V = \int_a^b h(y) dy$$
 where $a = 0$, $b = 4$, $h(y) = 16 \text{ ft. } 9$



3. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.2.5.pg

Book Problem 5

Find the volume V of the solid formed by rotating the region inside the first quadrant enclosed by $y = x^{\frac{3}{2}}$ and y = 9x; about the x-axis.

$$V = \int_a^b h(x) dx$$
 where $a = 0$, $b = 2$, $h(x) = \prod \{x \mid x \neq 0\}$

4. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.2.7.pg

Book Problem 7

Find the volume V formed by rotating the region enclosed by the curves:

$$y^3 = x$$
 and $x = 6y$ with $y \ge 0$; about the y-axis.

Book Problem 9

Find the volume of the solid obtained by rotating the region bounded by the curves: 2 x = 4 V/x y=29=41/2

$$y = 2x, y = 4\sqrt{x}$$
; about $y = 8$.

 $Volume = _$

6. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.2.10.pg

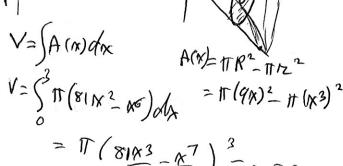
Book Problem 10

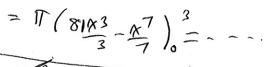
Find the volume of the solid obtained by rotating the region bounded by the curves: ,

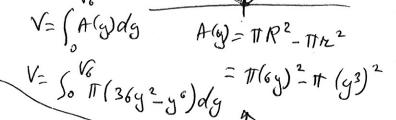
$$y = 1/x^5$$
, $y = 0$, $x = 1$, $x = 7$; about $y = -3$.

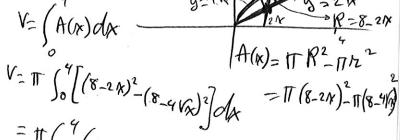
Volume = $\int_{1}^{7} - dx$.

Thus the volume =





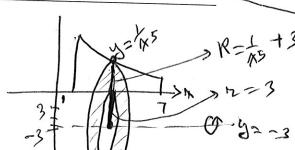




$$= \pi \int_{0}^{4} (64 - 34x + 4x^{2}) dx$$

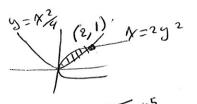
$$= \pi \left(-32x^{2} + 4x^{3} - - - \right) dx$$

$$= \frac{1}{8} + 3$$



7. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.2.11.pg

Book Problem 11



intersection $X = 2y^2 = 2\left(\frac{X^2}{4}\right)^2 = \frac{X^4}{8}$ $8 = 4^4$ $8 = 6^3$

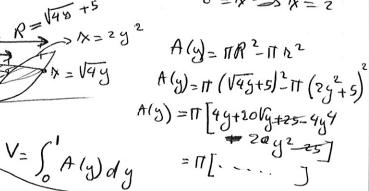
Find the volume of the solid obtained by rotating the region bounded by the curves:

$$y = x^2/4, x = 2y^2; \text{ about } x = -5.$$

 $x = \sqrt{4y}, x = 2y^2$

by rotating the region
$$x = 2$$
?

 $x = 2$
 $y = 4$
 $y = 4$
 $y = 4$



8. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.2.23.pg

Book Problem 23

Volume: _

Suppose that a CAT scan of a human liver shows cross-sections spaced 1.6 cm apart. The liver is 12.8 cm long and the cross-sectional areas, in square centimeters are 0, 12, 51, 75, 94, 101, 68, 33, and 0. Use Simpson's Rule to estimate the volume of the liver.

Answer: _____

9. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.2.27.pg

Book Problem 27

Find the volume of a cap of a sphere with radius r = 61 and height h = 11.

Volume=_

10. (2 pts) UNCC1242/EssentialCalculus-Stewart-Sec7.2.33.pg

Book Problem 33

The base of a certain solid is an elliptical region with boundary curve $16x^2 + 9y^2 = 144$. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.

Use the formula $V = \int_a^b A(x) dx$ to find the volume of the solid.

The lower limit of integration is $a = \frac{3}{2}$

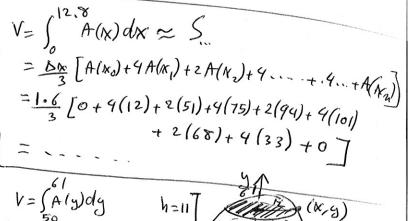
The upper limit of integration is b = 3

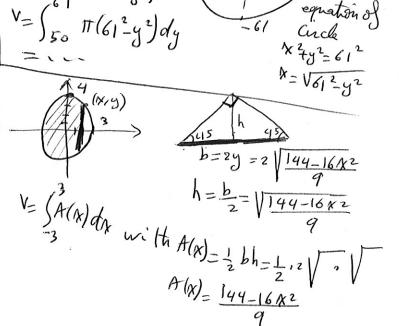
The base of the triangular cross-section is the following function of x: $\frac{2}{\sqrt{144-16}}$

The height of the triangular cross-section is the following function of x:

The area of the triangular cross-section is $A(x) = \frac{144 - 16 \text{ K}^2}{9}$

Thus the volume of the solid is V =





 $V_{=}$ \int_{-3}^{3} , ...

A(3)=11/2=11(V61=42)

11. (2 pts) UNCC1242/EssentialCalculus-Stewart-Sec7.2.35.pg

Book Problem 35

N= 36

The base of a certain solid is the area bounded above by the graph of y = 25 and below by the graph of $y = 36x^2$. Cross-sections perpendicular to the y-axis are squares.

Use the formula $V = \int_a^b A(y) dy$ to find the volume of the solid.

The lower limit of integration is $a = \mathcal{O}$

The upper limit of integration is b = 25

The side s of the square cross-section is the following function of y: $\frac{2\sqrt{3}}{36} = \frac{2\sqrt{3}}{36} = \sqrt{3}$

The area of the square cross-section is $A(y) = \frac{2}{3} \left(\frac{q}{y} \right)$

Thus the volume of the solid is V =

12. (2 pts) UNCC1242/EssentialCalculus-Stewart-Sec7.2.37.pg Book Problem 37

The base of a certain solid is the triangle with vertices (0,0), (4,0), and (0,3). Cross-sections perpendicular to the y-axis are isosceles triangles with height equal to the base.

Use the formula $V = \int_a^b A(y) dy$ to find the volume of the solid.

The lower limit of integration is a = 2

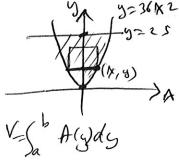
The upper limit of integration is b = 3

The base of the triangular cross-section is the following function of y: $\frac{4}{2}$ (3 - $\frac{1}{3}$)

The area of the triangular cross-section is $A(y) = \frac{8}{9} \left(\frac{2}{3} - \frac{1}{3} \right)^2$

Thus the volume of the solid is $V = \frac{1}{2}$

2



$$V = \int_{0}^{25} \left(\frac{9}{9}\right) d9$$

$$V = \frac{9^2}{18} / \frac{25}{25} = \frac{25^2}{18} = \dots$$

Cross section
$$A(y) = \begin{cases} y^2 = (2x)^2 \\ = 4x^2 + 4(\frac{y}{36}) \\ A(y) = \frac{y}{q} \end{cases}$$

$$b = 1 = \frac{4}{3}(3-9)$$

$$A(y) = \frac{1}{2} \left[\frac{4}{3} (3 - y)^{2} \right]^{2}$$

$$= \frac{1}{2} \cdot \frac{16}{9} (3 - y)^{2}$$

$$= 8 \cdot (3 - y)^{2}$$

$$V = \int A(y) dy = \int \frac{8}{9} (3-y)^{2} dy$$

$$= \frac{8}{9} \left(\frac{9}{9} - 6y + y^{2} \right) dy$$

$$= \frac{8}{9} \left(\frac{9}{9} - 3y^{2} + \frac{y^{3}}{3} \right)^{3}$$

- 1 4 1