If statement (d) is true, then each row of U contains a pivot position and there can be no pivot in the augmented column. So $A\mathbf{x} = \mathbf{b}$ has a solution for any \mathbf{b} , and (a) is true. If (d) is false, the last row of U is all zeros. Let \mathbf{d} be any vector with a 1 in its last entry. Then $\begin{bmatrix} U & \mathbf{d} \end{bmatrix}$ represents an *inconsistent* system. Since row operations are reversible, $\begin{bmatrix} U & \mathbf{d} \end{bmatrix}$ can be transformed into the form $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$. The new system $A\mathbf{x} = \mathbf{b}$ is also inconsistent, and (a) is false.

PRACTICE PROBLEMS

1. Let
$$A = \begin{bmatrix} 1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7 \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} 3 \\ -2 \\ 0 \\ -4 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -7 \\ 9 \\ 0 \end{bmatrix}$. It can be shown

that **p** is a solution of A**x** = **b**. Use this fact to exhibit **b** as a specific linear combination of the columns of A.

2. Let
$$A = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$. Verify Theorem 5(a) in this case by computing $A(\mathbf{u} + \mathbf{v})$ and $A\mathbf{u} + A\mathbf{v}$.

1.4 EXERCISES

Compute the products in Exercises 1–4 using (a) the definition, as in Example 1, and (b) the row–vector rule for computing $A\mathbf{x}$. If a product is undefined, explain why.

$$\begin{array}{cccc}
\mathbf{1.} & \begin{bmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix} & \mathbf{2.} & \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix} \\
\mathbf{3.} & \begin{bmatrix} 1 & 2 \\ -3 & 1 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} & \mathbf{4.} & \begin{bmatrix} 1 & 3 & -4 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

In Exercises 5–8, use the definition of Ax to write the matrix equation as a vector equation, or vice versa.

equation as a vector equation, or vice vising

5.
$$\begin{bmatrix}
1 & 2 & -3 & 1 \\
-2 & -3 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
2 \\
-1 \\
1 \\
-1
\end{bmatrix} = \begin{bmatrix}
-4 \\
1
\end{bmatrix}$$
6.
$$\begin{bmatrix}
2 & -3 \\
3 & 2 \\
8 & -5 \\
-2 & 1
\end{bmatrix}
\begin{bmatrix}
-3 \\
5
\end{bmatrix} = \begin{bmatrix}
-21 \\
1 \\
-49 \\
11
\end{bmatrix}$$
7.
$$x_1 \begin{bmatrix}
4 \\
-1 \\
7 \\
-4
\end{bmatrix} + x_2 \begin{bmatrix}
-5 \\
3 \\
-5 \\
1
\end{bmatrix} + x_3 \begin{bmatrix}
7 \\
-8 \\
0 \\
2
\end{bmatrix} = \begin{bmatrix}
6 \\
-8 \\
0 \\
-7
\end{bmatrix}$$
8.
$$z_1 \begin{bmatrix}
2 \\
-4
\end{bmatrix} + z_2 \begin{bmatrix}
-1 \\
5
\end{bmatrix} + z_3 \begin{bmatrix}
-4 \\
3
\end{bmatrix} + z_4 \begin{bmatrix}
0 \\
2
\end{bmatrix} = \begin{bmatrix}
5 \\
12
\end{bmatrix}$$

In Exercises 9 and 10, write the system first as a vector equation and then as a matrix equation.

9.
$$5x_1 + x_2 - 3x_3 = 8$$

 $2x_2 + 4x_3 = 0$
10. $4x_1 - x_2 = 8$
 $5x_1 + 3x_2 = 2$
 $3x_1 - x_2 = 1$

Given A and \mathbf{b} in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation $A\mathbf{x} = \mathbf{b}$. Then solve the system and write the solution as a vector.

11.
$$A = \begin{bmatrix} 1 & 3 & -4 \\ 1 & 5 & 2 \\ -3 & -7 & 6 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ 4 \\ 12 \end{bmatrix}$$
12. $A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -4 & 2 \\ 5 & 2 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$

13. Let
$$\mathbf{u} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$$
 and $A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix}$. Is \mathbf{u} in the plane in

 \mathbb{R}^3 spanned by the columns of A? (See the figure.) Why or why not?

14. Let
$$\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset of \mathbb{R}^3 spanned by the columns of A ? Why or why not?

- Let $A = \begin{bmatrix} 3 & -1 \\ -9 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Show that the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for all possible \mathbf{b} , and describe the set of all \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ does have a solution.
- 16. Repeat the requests from Exercise 15 with

$$A = \begin{bmatrix} 1 & -2 & -1 \\ -2 & 2 & 0 \\ 4 & -1 & 3 \end{bmatrix}, \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Exercises 17–20 refer to the matrices A and B below. Make appropriate calculations that justify your answers and mention an appropriate theorem.

$$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 4 & 1 & 2 \\ 0 & 1 & 3 & -4 \\ 0 & 2 & 6 & 7 \\ 2 & 9 & 5 & -7 \end{bmatrix}$$

- 17. How many rows of A contain a pivot position? Does the equation $A\mathbf{x} = \mathbf{b}$ have a solution for each \mathbf{b} in \mathbb{R}^4 ?
- 18. Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix B above? Do the columns of B span \mathbb{R}^3 ?
- 19. Can each vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix A above? Do the columns of A span \mathbb{R}^4 ?
- 20. Do the columns of B span \mathbb{R}^4 ? Does the equation $B\mathbf{x} = \mathbf{y}$ have a solution for each \mathbf{y} in \mathbb{R}^4 ?

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$. Does

 $\{v_1, v_2, v_3\}$ span \mathbb{R}^4 ? Why or why not?

22. Let
$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -3 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ -2 \\ -6 \end{bmatrix}$. Does

 $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ? Why or why not?

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- (23) a. The equation Ax = b is referred to as a vector equation.
 - b. A vector **b** is a linear combination of the columns of a matrix A if and only if the equation A**x** = **b** has at least one solution.
 - c. The equation $A\mathbf{x} = \mathbf{b}$ is consistent if the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a pivot position in every row.
 - d. The first entry in the product Ax is a sum of products.
 - e. If the columns of an $m \times n$ matrix A span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^m .
 - f. If A is an $m \times n$ matrix and if the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^m , then A cannot have a pivot position in every row.

- 24. a. Every matrix equation $A\mathbf{x} = \mathbf{b}$ corresponds to a vector equation with the same solution set.
 - b. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then \mathbf{b} is in the set spanned by the columns of A.
 - c. Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x.
 - d. If the coefficient matrix A has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent.
 - e. The solution set of a linear system whose augmented matrix is $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}]$ is the same as the solution set of $A\mathbf{x} = \mathbf{b}$, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$.
 - f. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^m .

25. Note that
$$\begin{bmatrix} 4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix}.$$
 Use this

fact (and no row operations) to find scalars c_1 , c_2 , c_3 such

that
$$\begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix} = c_1 \begin{bmatrix} 4 \\ 5 \\ -6 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ -2 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}.$$

- **26.** Let $\mathbf{u} = \begin{bmatrix} 7 \\ 2 \\ 5 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$. It can be shown that $2\mathbf{u} 3\mathbf{v} \mathbf{w} = \mathbf{0}$. Use this fact (and no row operations) to find x_1 and x_2 that satisfy the equation $\begin{bmatrix} 7 & 3 \\ 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}.$
- 27. Rewrite the (numerical) matrix equation below in symbolic form as a vector equation, using symbols $\mathbf{v}_1, \mathbf{v}_2, \ldots$ for the vectors and c_1, c_2, \ldots for scalars. Define what each symbol represents, using the data given in the matrix equation.

$$\begin{bmatrix} -3 & 5 & -4 & 9 & 7 \\ 5 & 8 & 1 & -2 & -4 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ 2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 11 \\ -11 \end{bmatrix}$$

28. Let \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 , and \mathbf{v} represent vectors in \mathbb{R}^5 , and let x_1 , x_2 , and x_3 denote scalars. Write the following vector equation as a matrix equation. Identify any symbols you choose to use.

$$x_1\mathbf{q}_1 + x_2\mathbf{q}_2 + x_3\mathbf{q}_3 = \mathbf{v}$$

- 29. Construct a 3×3 matrix, not in echelon form, whose columns span \mathbb{R}^3 . Show that the matrix you construct has the desired property.
- 30. Construct a 3×3 matrix, not in echelon form, whose columns do *not* span \mathbb{R}^3 . Show that the matrix you construct has the desired property.
- 31. Let A be a 3×2 matrix. Explain why the equation $A\mathbf{x} = \mathbf{b}$ cannot be consistent for all \mathbf{b} in \mathbb{R}^3 . Generalize your argument to the case of an arbitrary A with more rows than columns.

- (32.) Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? Explain. What about n vectors in \mathbb{R}^m when n is less than m?
- 33. Suppose A is a 4×3 matrix and \mathbf{b} is a vector in \mathbb{R}^4 with the property that $A\mathbf{x} = \mathbf{b}$ has a unique solution. What can you say about the reduced echelon form of A? Justify your answer.
- **34.** Let A be a 3×4 matrix, let \mathbf{v}_1 and \mathbf{v}_2 be vectors in \mathbb{R}^3 , and let $\mathbf{w} = \mathbf{v}_1 + \mathbf{v}_2$. Suppose $\mathbf{v}_1 = A\mathbf{u}_1$ and $\mathbf{v}_2 = A\mathbf{u}_2$ for some vectors \mathbf{u}_1 and \mathbf{u}_2 in \mathbb{R}^4 . What fact allows you to conclude that the system $A\mathbf{x} = \mathbf{w}$ is consistent? (*Note:* \mathbf{u}_1 and \mathbf{u}_2 denote vectors, not scalar entries in vectors.)
- 35. Let A be a 5×3 matrix, let y be a vector in \mathbb{R}^3 , and let z be a vector in \mathbb{R}^5 . Suppose Ay = z. What fact allows you to conclude that the system Ax = 5z is consistent?
- **36.** Suppose A is a 4×4 matrix and \mathbf{b} is a vector in \mathbb{R}^4 with the property that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Explain why the columns of A must span \mathbb{R}^4 .

[M] In Exercises 37–40, determine if the columns of the matrix span \mathbb{R}^4 .

37.
$$\begin{bmatrix} 7 & 2 & -5 & 8 \\ -5 & -3 & 4 & -9 \\ 6 & 10 & -2 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$
 38.
$$\begin{bmatrix} 4 & -5 & -1 & 8 \\ 3 & -7 & -4 & 2 \\ 5 & -6 & -1 & 4 \\ 9 & 1 & 10 & 7 \end{bmatrix}$$

$$\mathbf{39.} \begin{bmatrix} 10 & -7 & 1 & 4 & 6 \\ -8 & 4 & -6 & -10 & -3 \\ -7 & 11 & -5 & -1 & -8 \\ 3 & -1 & 10 & 12 & 12 \end{bmatrix}$$

40.
$$\begin{bmatrix} 5 & 11 & -6 & -7 & 12 \\ -7 & -3 & -4 & 6 & -9 \\ 11 & 5 & 6 & -9 & -3 \\ -3 & 4 & -7 & 2 & 7 \end{bmatrix}$$

- 41. [M] Find a column of the matrix in Exercise 39 that can be deleted and yet have the remaining matrix columns still span \mathbb{R}^4 .
- **42.** [M] Find a column of the matrix in Exercise 40 that can be deleted and yet have the remaining matrix columns still span \mathbb{R}^4 . Can you delete more than one column?

sg Mastering Linear Algebra Concepts: Span 1-18

WEB

SOLUTIONS TO PRACTICE PROBLEMS

1. The matrix equation

$$\begin{bmatrix} 1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 0 \\ -4 \end{bmatrix} = \begin{bmatrix} -7 \\ 9 \\ 0 \end{bmatrix}$$

is equivalent to the vector equation

$$3\begin{bmatrix} 1\\ -3\\ 4 \end{bmatrix} - 2\begin{bmatrix} 5\\ 1\\ -8 \end{bmatrix} + 0\begin{bmatrix} -2\\ 9\\ -1 \end{bmatrix} - 4\begin{bmatrix} 0\\ -5\\ 7 \end{bmatrix} = \begin{bmatrix} -7\\ 9\\ 0 \end{bmatrix}$$

which expresses \mathbf{b} as a linear combination of the columns of A.

2.
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 4 \\ -1 \end{bmatrix} + \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$A(\mathbf{u} + \mathbf{v}) = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 + 20 \\ 3 + 4 \end{bmatrix} = \begin{bmatrix} 22 \\ 7 \end{bmatrix}$$

$$A\mathbf{u} + A\mathbf{v} = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ 11 \end{bmatrix} + \begin{bmatrix} 19 \\ -4 \end{bmatrix} = \begin{bmatrix} 22 \\ 7 \end{bmatrix}$$