sect 2.2
Answer key

1. $\left[\begin{array}{cc}2 & -3 \\ -5 / 2 & 4\end{array}\right]$
2. $\left[\begin{array}{cc}-2 & 1 \\ 7 / 2 & -3 / 2\end{array}\right]$
3. $\left[\begin{array}{cc}1 & 1 \\ -7 / 5 & -8 / 5\end{array}\right]$
4. $\left[\begin{array}{ll}-2 & 1 \\ -7 / 4 & 3 / 4\end{array}\right]$
5.

$$
\begin{aligned}
& x_{1}=7 \\
& x_{2}=-9
\end{aligned}
$$

7. $(a 8 b)\left[\begin{array}{c}-9 \\ 4\end{array}\right],\left[\begin{array}{c}11 \\ -5\end{array}\right],\left[\begin{array}{c}6 \\ -2\end{array}\right],\left[\begin{array}{c}13 \\ -5\end{array}\right]$
8.

$$
\begin{aligned}
& A D=I \Rightarrow A^{-1} A D=A^{-1} I \\
& \Rightarrow I D=A^{-1} \Rightarrow D=A^{-1}
\end{aligned}
$$

9. a) T
10.a) F
b) F
b) T
II. (a) Solution exists b/c let $X=A^{-1} B$

$$
\Rightarrow A X=A\left(A^{-1} B\right)=I B=B
$$

c) F
c) T
d) T
d) T
e) T
e) F
(b) Solution unique
let Y be any solution:

$$
\begin{aligned}
& A Y=B \\
& A^{-1} A Y=A^{-1} B \Rightarrow Y=A^{-1} B
\end{aligned}
$$

12. A invertible $\Rightarrow \operatorname{rref}(A)=I$

So $\operatorname{reff}\left[\begin{array}{ll}A & B\end{array}\right]=\left[\begin{array}{ll}I & X\end{array}\right]$
now, $A^{-1} A=I$

$$
\Rightarrow \quad A^{-1}\left[\begin{array}{ll}
A & B
\end{array}\right]=\left[\begin{array}{ll}
I & A^{-1} B
\end{array}\right]
$$

we can do this b/c A^{-1}
is built from matrixes of elementary row operations
13.

$$
\begin{aligned}
& A B=A C \\
& \Rightarrow A^{-1} A B=A^{-1} A C \\
& \Rightarrow I B=I C \Rightarrow B=C
\end{aligned}
$$

But in general, no, not the

$$
\begin{aligned}
& (B-C) D=0 \\
& (B-C) D D^{-1}=0 \cdot D^{-1} \\
& (B-C) I=0 \\
& B-C=0 \Rightarrow B=C
\end{aligned}
$$

15. $D=C^{-1} B^{-1} A^{-1}$
16. $(B-C) D=0$
17.

$$
\begin{aligned}
& A=P B P^{-1} \\
\Rightarrow & P^{-1} A=P^{-1} P B P^{-1} \\
\Rightarrow & P^{-1} A P=I B P^{-1} P \\
\Rightarrow & P^{-1} A P=B \Psi=B
\end{aligned}
$$

29. $\left[\begin{array}{rr}-7 & 2 \\ 4 & -1\end{array}\right]$
30. $\left[\begin{array}{cc}-7 / 5 & 2 \\ 4 / 5 & -1\end{array}\right]$
31. $\left[\begin{array}{cc}8 & 3 \\ 10 & 4 \\ 7 / 2 & 3 / 2\end{array}\right.$
32. not invertible
33. $\left[\begin{array}{c}3 \\ -6 \\ 4\end{array}\right] \quad$ found by row reducing $\left[\begin{array}{ll}A & e_{3}\end{array}\right]$
34.

$$
C=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

