Theorem 6.1: A non-empty subset *I* of a ring *R* is an ideal if and only if it has the properties:

- i. if $a, b \in I$, then $a b \in I$;
- ii. if $r \in R$ and $a \in I$, then $ra \in I$ and $ar \in I$.

Theorem 6.2: Let R be a commutative ring with identity, c an element of R, and I the set of all multiples of c in R, that is, $I = \{rc \mid r \in R\}$. Then I is an ideal.

Theorem 6.3: Let *R* be a commutative ring with identity and $c_1, c_2, ..., c_n \in R$. Then the set $I = \{r_1c_1 + r_2c_2 + \cdots + r_nc_n \mid r_1, r_2, \dots, r_n \in R\}$ is an ideal in *R*.

Theorem 6.4: Let *I* be an ideal in a ring *R*. Then the relation of the congruence modulo *I* is

- i. reflexive: $a \equiv a \mod I$ for every $a \inf R$;
- ii. symmetric: if $a \equiv b \mod I$, then $b \equiv a \mod I$;
- iii. transitive: if $a \equiv b \mod I$ and $b \equiv c \mod I$, then $a \equiv c \mod I$.

Theorem 6.5: Let *I* be an ideal in a ring *R*. If $a \equiv b \mod I$ and $c \equiv d \mod I$, then

- i. $a + c \equiv b + d \mod I$;
- ii. $ac \equiv bd \mod I$.

Theorem 6.6: Let I be an ideal in a ring R and $a, b \in R$. Then $a \equiv b \mod I$ if and only if a + I = b + I.

Corollary 6.7: Let *I* be an ideal in a ring *R*. Then two cosets of *I* are either disjoint or identical.

Theorem 6.8: Let I be an ideal in a ring R. If a + I = b + I and c + I = d + I in R/I, then

$$(a + c) + I = (b + d) + I$$
 and $ac + I = bd + I$

Theorem 6.9: Let *I* be an ideal in the ring *R*. Then

- i. R/I is a ring with addition and multiplication of cosets as defined in Theorem 6.8.
- ii. If *R* is commutative, then R/I is a commutative ring.
- iii. If *R* has an identity, then so does the ring R/I.

Theorem 6.10: Let $f: R \to S$ be a homomorphism of rings, and let $K = \{r \in R \mid f(r) = 0_S\}$. Then K is an ideal in the ring R.

- **Theorem 6.11**: Let $f: R \to S$ be a homomorphism of rings with kernel K. Then $K = \langle 0_K \rangle$ if and only if f is injective.
- **Theorem 6.12**: Let *I* be an ideal in a ring *R*. Then the map $\pi: R \to R/I$ given by $\pi(r) = r + I$ is a surjective homomorphism with kernel *I*.
- **Theorem 6.13 (First Homomorphism Theorem)**: Let $f: R \to S$ be a surjective homomorphism of rings with kernel K. Then the quotient ring R/K is isomorphic to S.
- <u>Second Homomorphism Theorem</u>: Let *I* and *J* be ideals in ring *R*. Then $I \cap J$ is an ideal in *I*, and *J* is an ideal in *I* + *J*. Then $\frac{I}{I \cap J} = \frac{I+J}{J}$.

<u>Third Homomorphism Theorem</u>: Let I and K be ideals in ring R such that $K \subseteq I$, so I/K is an ideal in R/K. Then $\frac{(R/k)}{(I/K)} \cong R/I$.

- <u>Theorem 6.14</u>: Let P be an ideal in a commutative ring R with identity. Then P is prime if and only if the quotient ring R/I is an integral domain.
- <u>Theorem 6.15</u>: Let M be an ideal in a commutative ring R with identity. Then M is a maximal ideal if and only if the quotient ring R/M is a field.

Corollary 6.16: In a commutative ring *R* with identity, every maximal ideal is prime.