due April 17

Name: _____

When writing a proof, be sure to cite all of the properties, theorems, corollaries, and definitions you use. Be sure to write all of your answers in complete sentences (even the non-proof questions).

1. Factor $3x^6 + 2x^5 + 2x^4 + x^3 + x^2 + 4x + 2$ into its product of irreducibles in $\mathbb{Z}_5[x]$.

- 2. Determine whether the given congruence-class ring is a field:
 - a. $\mathbb{Z}_3[x]/\langle x^3 + 2x^2 + x + 1 \rangle$

b. $\mathbb{Z}_5[x]/\langle 2x^3 - 4x^2 + 2x + 1 \rangle$

3. Let F be a field. If *a* is an element of F, describe the field $F[x]/\langle x - a \rangle$. (ie: what do the elements of $F[x]/\langle x - a \rangle$ look like; how do the two fields F and $F[x]/\langle x - a \rangle$ compare, etc.)

4. Suppose K is a ring that contains \mathbb{Z}_6 as a subring. Show that $3x^2 + 1$ in $\mathbb{Z}_6[x]$ has no roots in K. Why does Corollary 5.12 fail in this situation?

5. Let F be a field and p(x) irreducible in F[x]. If $f(x) \neq 0_F$ in $F[x]/\langle p(x) \rangle$ and h(x) is in F[x], prove that there exists a polynomial g(x) in F[x] such that f(x)g(x) = h(x) in $F[x]/\langle p(x) \rangle$. [Note: the polynomials in $F[x]/\langle p(x) \rangle$ are actually equivalence classes.]