due April 24

Name: _____

When writing a proof, be sure to cite all of the properties, theorems, corollaries, and definitions you use. Be sure to write all of your answers in complete sentences (even the non-proof questions).

- 1. Consider the following ideals in \mathbb{Z} :
 - a. Find principal ideals $\langle a \rangle$ and $\langle b \rangle$ in the ring \mathbb{Z} such that $\langle a \rangle = \langle b \rangle$ but that $a \neq b$.
 - b. Show that $\langle 4,6 \rangle = \langle 2 \rangle$ in \mathbb{Z} .

2. Let *I* and *J* be ideals in ring *R*. Prove that the set $K = \{a + b \mid a \in I, b \in J\}$ is an ideal in *R* that contains both *I* and *J*. Note, *K* is called the sum of *I* and *J* and is denoted by I + J.

3. Verify that $I = \{0,3,6,9,12\}$ is an ideal in \mathbb{Z}_{15} and list all of its distinct cosets.

4. Let $I = \{0,5\}$ in \mathbb{Z}_{10} . Verify that I is an ideal and show that $\mathbb{Z}_{10}/I \cong \mathbb{Z}_5$.

5. List all principal ideals in \mathbb{Z}_{12} . Then write out the addition and multiplication tables of \mathbb{Z}_{12}/I where $I = \langle 3 \rangle$.