due May 1

Name: _____

When writing a proof, be sure to cite all of the properties, theorems, corollaries, and definitions you use. Be sure to write all of your answers in complete sentences (even the non-proof questions).

- 1. Let $[a]_n$ denote the equivalence class of a modulo n.
 - a. Show that the map $f: \mathbb{Z}_{12} \to \mathbb{Z}_4$ that sends $[a]_{12}$ into $[a]_4$ is a surjective homomorphism.

- b. What is the kernel of f?
- 2. Show that $\mathbb{Z}_{20}/\langle 5 \rangle \cong \mathbb{Z}_5$.

3. Let $f: R \to S$ be a surjective ring homomorphism, and let I be an ideal of R. Prove that f(I) is an ideal of S, where $f(I) = \{s \in S \mid s = f(a) \text{ for some } a \in I\}$.

4. Let *I* be an ideal in a non-commutative ring *R* such that $ab - ba \in I$ for all $a, b \in I$. Prove that R/I is commutative.