\qquad

When writing a proof, be sure to cite all of the properties, theorems, corollaries, and definitions you use. Note, questions 1 and 2 will require a proof.

1. Show that $\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R}.
2. Show that $\{0,2,4,6,8\}$ is a subring of \mathbb{Z}_{10}. Does this subring have an identity element (ie: a multiplicative identity)? If so, what is it?
3. Solve the following equations for x. If no such x exists, explain why.
a. $7 x \equiv 11 \bmod 450$
$x \equiv$ \qquad $\bmod 450$
b. $6 x \equiv 3 \bmod 16$
$x \equiv$ \qquad mod 16
c. $\quad 15 x \equiv 9 \bmod 18$
$x \equiv$ \qquad mod 18
4. Write out the addition and multiplication tables for $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.
