When writing a proof, be sure to cite all of the properties, theorems, corollaries, and definitions you use.

- 1. Give an example of polynomials f(x), $g(x) \in \mathbb{Q}[x]$ that satisfy each given condition:
 - a. $deg[f(x) + g(x)] < max\{f(x), g(x)\}$

b. $deg[f(x) + g(x)] = max\{f(x), g(x)\}\$

2. Let R be a ring. If $f(x), g(x) \in R[x]$ and $f(x) + g(x) \neq 0_R$, prove that $\deg[f(x) + g(x)] \leq \max\{f(x), g(x)\}$

3. Let $D: \mathbb{R}[x] \to \mathbb{R}[x]$ be the derivative map defined by $D(a_0 + a_1x + a_2x^2 \dots + a_nx^n) = a_1 + 2a_2x + \dots + na_nx^{n-1}$. Is D a homomorphism of rings? An isomorphism?

4. Let F be a field and f(x), $g(x) \in F[x]$. If f(x) divides g(x) and f(x) divides f(x), show that f(x) = cg(x) for some non-zero $c \in F$.

5. Use the Euclidean Algorithm to find the gcd of $f(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$ and $g(x) = 3x^3 + 5x^2 + 6x$ in $\mathbb{Z}_7[x]$.