due Feb 14

Homework Set 5 (section 2.1 – 2.3)

Name: _____

1. Let a, b, and n > 1 be integers. If [a]x = [b] has a solution in \mathbb{Z}_n , prove that the gcd(a, n) divides b. (Hint: if x = [r] is a solution, then [ar] = [b] implying that ar - b = nk for some integer k. Be sure to give the reasons why all of these statements are true.)

2. Let a, b, and n > 0 be integers. If ab = 0 in \mathbb{Z}_n , then either prove or disprove that either a = 0 or b = 0. What about in \mathbb{Z}_p where p is prime?

3. Write out the addition and multiplication tables for \mathbb{Z}_8 .

4. Let a, b, and n be positive integers. Prove that $a \equiv b \mod n$ if and only if a and b leave the same remainder when divided by n.

- 5. Answer the following computational questions. Show all necessary work. a. Compute: (x + 2)(x + 3) in \mathbb{Z}_5
 - b. Compute: $(x+2)^5$ in \mathbb{Z}_5

c. For which a does ax = 1 have a solution in \mathbb{Z}_8 ? You may assume that $0 \le a < 8$.