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Abstract

Most convolutional neural networks (CNNs) lack mid-

level layers that model semantic parts of objects. This lim-

its CNN-based methods from reaching their full potential in

detecting and utilizing small semantic parts in recognition.

Introducing such mid-level layers can facilitate the extrac-

tion of part-specific features which can be utilized for better

recognition performance. This is particularly important in

the domain of fine-grained recognition.

In this paper, we propose a new CNN architecture that

integrates semantic part detection and abstraction (SPDA-

CNN) for fine-grained classification. The proposed network

has two sub-networks: one for detection and one for recog-

nition. The detection sub-network has a novel top-down

proposal method to generate small semantic part candi-

dates for detection. The classification sub-network intro-

duces novel part layers that extract features from parts de-

tected by the detection sub-network, and combine them for

recognition. As a result, the proposed architecture provides

an end-to-end network that performs detection, localiza-

tion of multiple semantic parts, and whole object recogni-

tion within one framework that shares the computation of

convolutional filters. Our method outperforms state-of-the-

art methods with a large margin for small parts detection

(e.g. our precision of 93.40% vs the best previous precision

of 74.00% for detecting the head on CUB-2011). It also

compares favorably to the existing state-of-the-art on fine-

grained classification, e.g. it achieves 85.14% accuracy on

CUB-2011.

1. Introduction

Fine-grained recognition aims to distinguish among sub-

ordinate categories, such as identifying product models [31,

∗Indicates equal contribution. Email: han.zhang@rutgers.edu

26, 30] and discriminating animal and plant species [37,

23]. Compared to generic object recognition, this task is

more challenging since the subtle visual differences can

be easily overwhelmed by the other factors such as poses

and viewpoints. Humans typically refer to the difference in

some semantic parts to distinguish subordinate categories.

Thus, detecting and fully utilizing object parts is extremely

important in fine-grained object recognition.

A majority of fine-grained recognition methods have in-

corporated part localization. State-of-the-art methods ap-

ply convolutional neural networks (CNNs) to detect part

regions [41, 28]. However, they do not model or utilize

small semantic parts. For example, on the CUB-2011 bird

dataset [37], both methods [41, 28] only localized the head

and body, i.e., large parts, and they did not utilize other

smaller parts such as the tail and wings although these parts

can be very useful for recognition [9]. The head and body

detection results by these two methods also show that the

results for the head are consistently worse than that of the

body because of the head’s smaller size. To the best of our

knowledge, existing CNN-based fine-grained classification

methods have not focused on the detection and utilization

of small semantic parts.

Traditional CNNs lack mid-level layers that model se-

mantic parts of objects. In order to introduce such layers

to facilitate the extraction of part-specific features, several

works proposed part-based CNN methods [41, 5, 28, 39].

These methods define and train a separate CNN network

for each part. Features extracted from each part are then

concatenated into a long vector and used to train a sepa-

rate classifier (e.g., SVM) for the final classification. This

framework has several limitations, however. It makes train-

ing and testing a multi-stage process, and makes the sharing

of convolutional filters among the separate part networks

difficult. Furthermore, it limits the ability of the overall ar-

chitecture to learn correlations among different parts, which
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Figure 1. SPDA-CNN: Unifying Semantic Part Detection and Abstraction for fine-grained classification. In the detection sub-network, we

propose a novel top-down k nearest neighbor (k-NN) method to generate proposals for small semantic parts. The number of our k-NN

proposals is about one order less than the traditional region proposal methods (e.g., selective search [36]). Furthermore our proposals

inherit prior geometric constraints from the nearest neighbors. Given k-NN proposals, our part detection network applies Fast RCNN [13]

to regress and obtain much more accurate part bounding boxes compared with the directly transfer method [16]. The final part detections

are then sent to the part-abstraction and classification sub-network. The invisible/occluded parts (such as leg here) are represented by zeros.

To get an abstraction of semantic parts, combine them and learn the correlation among them for recognition, we propose to add a semantic

part RoI pooling layer, a part-based fully connected layer (pfc), and a concatenation fully connected layer (cfc) to the traditional CNN

framework. By sharing the computation of convolutional filters, the proposed architecture provides an end-to-end network that performs

detection, localization of multiple semantic parts, and whole object recognition within one framework.

can be essential to recognition. Therefore, an end-to-end

CNN framework with mid-level semantic part abstraction

layers is needed, in particular for fine-grained classification.

To tackle these above-mentioned challenges, we propose

a new CNN architecture with built-in mid-level part abstrac-

tion layers. As shown in Figure 1, the proposed architecture

has two sub-networks: a detection sub-network and a part-

abstraction and recognition sub-network. The contribution

of our paper is threefold: (1) A novel top-down proposal

method is designed to generate small semantic part candi-

dates for multiple semantic parts detection. As a result, our

detection sub-network outperforms state-of-the-art methods

for small parts; e.g., the precision of head is improved from

74.00% to 93.40% on the CUB-2011 dataset. (2) A new

type of part-based layers is proposed in the recognition sub-

network, which provides an abstraction of small semantic

parts, extracts part-based features and combines them for

recognition. Our recognition sub-network achieves state-of-

the-art performance. (3) We further integrate the part detec-

tion and part-based recognition sub-networks into a unified

architecture to form an end-to-end system for fine-grained

classification; in this way, the sub-networks can easily share

the computation of convolutional filters.

2. Related Work

Subordinate classes within a category generally share

common appearances with subtle differences at certain

parts. Therefore, localizing object parts and extracting dis-

criminative part features play crucial roles in fine-grained

image recognition. Some of the pioneering works in this

research direction use low-level image features for part

localization and part feature abstraction. Among them,

DPM [11, 42, 7] and Poselet [4, 10] have been extensively

utilized to localize object parts from different poses and

viewpoints. Other works [16, 12] transferred part loca-

tions to a test image from training samples with the most

similar global shapes. Göring et al. [16] extracted hand-

crafted features from each part for the final classification;

this method achieved promising classification results on the

Caltech-UCSD birds datasets [37, 38], because all 15 small

semantic parts of the bird were used. Since they directly
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transferred part regions from training samples to a test im-

age, however, the transferred regions suffer from low over-

lapping with the ground truth; by running their source code,

we found the average overlap between the transferred part

regions and the ground truth is only 0.45.

Currently, methods based on CNNs [41, 25, 28, 5, 15, 18]

significantly outperform previous works that rely on hand-

crafted features for part detection, part abstraction and fine-

grained classification. For example, Zhang et al. [41] ap-

plied the bottom-up selective search method [36] to gener-

ate part and object proposals and use RCNN [14] to per-

form detection. It was difficulty for their selective search

method to propose small semantic part regions. So they

only utilized two big parts (i.e., head and torso). Also be-

cause there are no geometric constraints among selective

search proposals, they had to provide extra hand-crafted ge-

ometric constraints to further filter the detection results. Lin

et al. [28] directly regressed part bounding box coordinates

from CNN features and proposed to use valve linkage func-

tion to join part localization, alignment and class prediction

in one network for each part. However, this method also

only used the head and torso. Other unsupervised meth-

ods [24, 25, 39, 34] could generate multiple object parts, but

they are not guaranteed to produce small parts with seman-

tic meanings. On the other hand, many of those part-based

CNN methods [41, 28, 5] followed the multi-stage CNN-

SVM scheme for fine-grained classification, which makes

the training process expensive and also restricts the usage

of more semantic parts. Although [40] has shown some

neurons in CNN might implicitly capture part or attribute

information, there is no evidence that part-level features are

well modeled in the current architecture.

3. Our Approach

As illustrated in Figure 1, the proposed architecture inte-

grates a detection sub-network and a part-abstraction and

recognition sub-network. The two sub-networks share a

common set of convolutional layers. In this section we ex-

plain the details of these two sub-networks.

3.1. Part Detection Sub­network

3.1.1 Geometrically-constrained Top-down Region

Proposals for Small Semantic Parts

Small semantic object parts are hard to detect since they

may not have distinct visual features compared to the rest

of the object. On the other hand, their rough locations

can easily be estimated if we know the global shape of the

object and geometric constraints among parts are utilized.

However, traditional region proposal methods [36, 6, 1, 43]

often focus on bottom-up image cues ignoring geomet-

ric constraints, thus fail to generate region candidates for

small semantic parts. In this paper, inspired by the recent

success of nonparametric part transfer methods [16, 12]

for fine-grained recognition, we propose a geometrically-

constrained part proposal method similar to the k Nearest

Neighbors (k-NN) approach to generate candidate part re-

gions for detection.

The proposed method is a top-down scheme. First, his-

tograms of oriented gradients (HOG) in the bounding box

of the object are computed to represent its rough global

shape. Then based on HOG features, the k nearest neigh-

bors of the given image are retrieved from the training

dataset. All part regions of each neighbor are scaled propor-

tionally according to the size of the given test image. Let

B = [b11, ..., b1m, b21, ..., b2m, ..., bk1, ..., bkm] denote all

the transferred part bounding boxes, where m is the number

of parts in each object. These transferred parts inherit the

prior information from nearest neighbors, which have ora-

cle part annotations and geometric constraints among parts.

To generate part region proposals from those transferred re-

gions, we investigate two types of priors.

1. Strong prior is the prior information that inherits both

part class label and part geometric constraints from the

nearest neighbors. With this type of prior, we gener-

ate proposals for the i-th part of the given image using

transferred part locations [b1i, b2i, ..., bki]. Thus, the

number of proposals for each part is k and the total

number for all parts is N = km.

2. Weak prior is the prior that is not restricted to the

prior part class label compared to the strong prior.

That is, [b11, ..., b1m, b21, ..., b2m, ..., bk1, ..., bkm] are

equally shared as proposals for every part of the given

image. In this case, the number of proposals for each

part is the same as the total number of proposals (i.e.,

N = km).

Considering the possibility of invisible or occluded parts,

the total number of proposals might be less than N .

Compared with our top-down part region pro-

posal method, the bottom-up methods, (e.g., selective

search [36]), use no prior information. They can propose

regions everywhere in a given image without any part

geometric constraints. Moreover, our approach does not

generate part regions through low-level texture or color

image features, since those features may not be reliable

for small semantic parts or part regions without distinct

boundaries. In addition, since the values for m and k are

usually very small (e.g., m ≤ 10, k ≤ 20), the number of

our part proposals is about one order of magnitude less than

that of the traditional region proposals (e.g., 200 vs 2000).

3.1.2 Fast RCNN based Part Detection

Given the k-NN part proposals, our detection network

(DET-NET) applies Fast RCNN [13] to regress each pro-

posed part region and assigns a part label. As each object

has m parts, the DET-NET has (m+1) way output, includ-

ing m part labels and one background label as 0. Each way

of the output contains one regressed bounding box, b, and

a confidence score, s ∈ [0, 1]. As in Fast RCNN [13], we
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train the part classifier and part regressor jointly by optimiz-

ing the multi-task loss L.

L
(

s, b, c, bgt
)

= Lcls (s, c) + λ [c > 0]Lloc

(

bc, bgt
)

(1)

in which c ∈ [0,m] is the ground truth class for the in-

put part bounding box; Lcls (s, c) is the log loss for the

true class; Lloc is the loss for part bounding box regression,

where bc is the regressed bounding box for the true class and

bgt is the ground truth box for the input part. More details

about Lcls and Lloc can be referred to [13].

We classify all the part region proposals in parallel, and

use a simple post-processing strategy to filter the results.

We first assume that each object part could have at most one

detection in the test image. Thus for each part, only the part

bounding box with the highest confident score is chosen,

indicated by {b∗, s∗}. We then remove the detections with

confidence scores lower than a threshold, which indicates

the corresponding parts are actually invisible (e.g., the leg

detection in Figure 1). In this paper, we set the threshold on

the confidence score to be the probability of random guess,

1/(m+ 1).

3.2. Part Abstraction and Classification

Our part abstraction and classification sub-network

(CLS-NET) introduces a semantic part RoI pooling layer,

a part-based fully connected layer (pfc) and a concatena-

tion fully connected layer (cfc) to the traditional CNN ar-

chitecture to adjust it to be an end-to-end framework for

fine-grained classification. The semantic part RoI pooling

layer is devoted to extracting features only from the seman-

tic object parts detected by the detection sub-network, and

re-organizing them in a pre-defined order. The pfc layer

only allows connections inside the same part in order to ab-

stract mid-level part-specific features. A cfc layer is used

to combine the pfc layers for all parts to enable an end-to-

end training for all parts together in one network. The other

convolutional (conv) and fully connected (fc) layers are the

same as those in [27]. Figure 1 shows the details of our part

abstraction and classification network. We also explain the

details of these above-mentioned layers next.

3.2.1 Semantic Part RoI Pooling Layer

In the traditional CNN architecture, the pooling layer is

used to increase the translation invariance and reduce the

spatial size of the network. So the same pooling opera-

tion (e.g., max pooling) is applied everywhere in the feature

map. However, this “blind-mind” pooling strategy ignores

the fact that not all the features in the feature map are useful

for classification. Given that features from semantic parts of

an object are more valuable for classification, we propose a

part RoI pooling layer which is “clever” enough to conduct

pooling just from the semantic parts of the object.

The proposed layer has two operations, pooling and re-

organizing. First, based on the results from detection (dur-

ing testing) or ground truth (during training), the part RoI

pooling layer does semantic pooling. 1) Each part region

is divided into H ×W (e.g., 3 × 3) sub-windows and then

max-pooling is applied to each sub-window. A similar strat-

egy was used in methods [13, 19]. 2) Features that do not

lie within the semantic parts of the object are just discarded.

Then the pooled features from different parts are re-

organized in a pre-defined order (e.g., head, belly, back, ...).

This process can also be viewed as part alignment, which is

useful for fine-grained classification.

Note that this is different from the RoI pooling in [13],

because region proposals in the RoI pooling do not have

an order and are evaluated separately in later steps. Their

RoI pooling is just a way to reduce computational cost by

sharing the convolutional filters. In contrast, our semantic

part RoI pooling layer conducts feature selection and re-

ordering, which are useful for the final classification.

3.2.2 Part-based Fully Connected Layer

Considering that the performance of fine-grained recogni-

tion heavily relies on the features in object parts, we propose

to directly add a part-based fully connected layer (pfc) in

CNN to model mid-level part information for fine-grained

classification. Each node in the pfc layer is only allowed to

connect nodes which are from the same part of the object.

yi = f (Wixi) , i = 1, 2, ...m (2)

where xi are the input features in part i, yi are the output

features of part i in the pfc layer, Wi are the weight param-

eters set for part i. Note that Wi are unique for each part to

enforce the network to learn part specific features.

Compared to the fully connected layer, the main advan-

tage of this pfc layer is that it cuts the redundant interac-

tions of nodes in different parts and focuses on modeling

the part features in the mid-level. It bridges the gap be-

tween low-level image features and high-level holistic in-

formation. Moreover, the number of parameters in this layer

is much smaller than that of the fully connected layer given

the same size input, which is also a desirable property in a

large neural network.

Note that our pfc layer is different from other works [17,

20, 35], where the local convolutional filters are utilized to

specified local regions. First, the convolutional filters in

their works are applied to the same spatial location rather

than the same parts, thus they are less applicable to objects

with different poses since parts are not necessarily at the

same location in different images. Second, for each part,

we still use the same convolutional filters to capture the

low-level image features. In our case, only the mid-level

pfc layer discriminates the variation among different parts.

To the best of our knowledge, we are the first to propose

adding a pfc layer in CNN for mid-level part abstraction.

3.2.3 Concatenation Fully Connected Layer

Note that most previous part-based CNN approaches [41,

5, 28] train a separate CNN network for each part and con-

catenate the CNN features extracted for each part and then

train a SVM on this concatenated feature vector. Here we
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propose to use a concatenation fully connected (cfc) layer to

build an integrated network dealing with different parts for

fine-grained classification. This allows the propagation of

classification error to all the parts and, hence, adjusting the

part weights during training. The nodes in this layer con-

nect to all the nodes in pfc layers. Thus this layer models

the interactions among the nodes in different parts.

y = f

(

m
∑

i=1

Wixi

)

(3)

where xi are the input features from part i, Wi are the

weight parameters connecting with part i, y are the out-

put features in this layer. During the training procedure, the

connection weights Wi are adjusted to assign relative im-

portance to different parts.

Compared with previous works’ CNN-SVM scheme, our

network can be trained and tested end-to-end for differ-

ent parts in one stage. No extra storage is needed for

feature caching in our network. Further, while the CNN-

SVM scheme ignores the fact that different parts contribute

differently in the classification, in our network, the cfc

layer learns the relative importance of different parts for the

recognition task.

3.3. Unifying Two Sub­networks

So far we have discussed the structure in our detec-

tion sub-network and classification sub-network. These

two sub-networks can be trained and tested independently

for the corresponding tasks. However, we want to build a

unified network instead of having two separate networks.

One additional motivation is that in one unified network,

the convolution computation can be shared thus reduce

significantly the computational cost. Some other recent

works [8, 32, 33] have explored the same idea in object de-

tection and semantic segmentation.

To unify the two sub-networks, we follow a similar idea

from [32], using alternating optimization. Our 3-step

training algorithm is as follows: First, the detection sub-

network (DET-NET) and classification sub-network (CLS-

NET) are trained for the corresponding task, respectively.

Initialized with the ImageNet pre-trained model, these two

sub-networks are fine-tuned end-to-end independently. For

training the CLS-NET, the oracle part annotations instead

of part detection results are used. At this point, these two

sub-networks still have different conv layers . Second,

we use the first n conv layers of CLS-NET to replace the

corresponding layers in DET-NET, and then fine-tune all

the other unique layers in DET-NET. Here n is a hyper-

parameter, which plays a trade-off between accuracy and

efficiency for the unified network. In the last step, using the

part detections from DET-NET, we fine-tune all the other

layers in CLS-NET except the shared conv layers. There-

fore, these two sub-networks will have the same conv layers

and thus form a unified network.

beak forehead crown nape throat 

left eye right eye back belly breast 

left leg right leg left wing right wing tail 

Figure 2. Parts illustration (Left: bird in the W ×H bounding box

with part centers marked by circles; Right: 1

4
W ×

1

4
H region for

each part. Black regions represent invisible parts.)

4. Experiments

Datasets: we evaluate our method on the well-known

fine-grained benchmark birds dataset, CUB-2011 [37]. It

has 200 bird species, with high degrees of similarity among

some categories. Each category contains about 60 images

with oracle object bounding boxes. Just as several previous

works [16, 28], we will use these bounding boxes for both

training and testing. Each image also provides the oracle

annotations for 15 part centers. Similar to [16], we set each

part region to be the size of 1

4
W × 1

4
H where W and H

indicates the width and height of the object bounding box,

respectively. As Figure 2 shows, regions of beak, forehead,

crown, nape, throat, left and right eyes are highly overlap-

ping. Thus, to avoid the duplicate usage of those regions,

we define the union of all these seven part regions to be a

grouped part, called head. Also the pair of legs and the pair

of wings are symmetrical, so we assign an identical label to

each pair. Consequently, we have seven parts for the bird in

the order of head, back, belly, breast, leg, wing and tail.

Implementation Details: Our network is built on the

open-source package Caffe [22]. CaffeNet (a variant of

AlexNet [27]) is by default used for the initialization of

both detection and classification sub-networks. The aspect

ratio of the input image is kept unchanged and then either

the shortest length is scaled to 600 or the longest length is

scaled to 800. In the classification network, for each part,

the part RoI pooling size is 3 × 3 and the number of nodes

in the pfc layer is 512 for each part. The number of nodes

in the cfc layer is kept as 4096. Out of the 5 conv layers, the

two sub-networks share the first 3 conv layers in order to

achieve the best trade-off between accuracy and efficiency.

Random flip, crop and rotation are added as data augmenta-

tion for training the network.

4.1. Part Detection Results on CUB­2011

To evaluate our part detection sub-network for small se-

mantic object part detection, we first investigate the hyper-

parameters of our k-NN proposal method and then compare

our detection results with the state-of-the-art works [28, 41,

2]. For all experiments, part detection is considered correct

if it has at least 0.5 overlap with ground truth.

Hyper-parameter k. Table 2 lists detection results of

our k-NN proposal method with different k values. It indi-
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Parts Head Back Belly Breast Leg Wing Tail mAP

MCG [1] 90.58% 43.36% 34.23% 34.43% 53.44% 51.72% 51.25% 51.29%

Edge box [43] 90.54% 35.66% 48.61% 50.08% 66.28% 53.03% 43.28% 55.35%

selective search [36] 90.80% 56.07% 50.98% 51.79% 66.26% 62.09% 63.87% 63.12%

Ours 90.87% 75.88% 63.16% 67.46% 79.69% 64.79% 67.17% 72.72%

Table 1. Comparison of our k-NN proposal and bottom-up proposal methods for small semantic parts detection by average precision.

k 1 5 10 15 20

mAP 52.83% 70.96% 71.45% 72.70% 72.72%

Table 2. Comparison of our k-NN proposal method with different

k values by the mean average precision (mAP) of all seven parts.

cates that we can improve the overall performance for all

parts by increasing the k value up to 20. From k = 15 to

k = 20, the incremental value becomes very small. So we

set 20 as the default k value of our k-NN proposal method

for all other experiments.

Strong prior or weak prior. Compared to the strong

prior, our k-NN proposal method with weak prior gives

slightly higher recall, because it is not restricted to the prior

part class label inherited from the nearest neighbors, and

more candidate regions are proposed for each part. The

mean average precision (mAP) of the weak prior improves

that of the strong prior from 71.79% to 72.72%, see Table 2.

So we will use the weak prior in all our other experiments

by default.

Comparison with bottom-up proposal methods. To

evaluate the effectiveness of our top-down proposal method

for small semantic parts detection, we compare it with sev-

eral well known bottom-up methods [36, 43, 1] with the

same metric. As shown in Table 1, our k-NN proposal

method achieves 72.72% mAP that significantly outper-

forms all baseline methods. For example, our method gives

a 9.6% higher mAP than our best baseline, the selective

search method [36]. Results for each part further indi-

cate that our method is much more accurate for propos-

ing small semantic part regions (such as “back” and “leg”),

compared with all baseline methods, e.g., we achieves a

19.48% higher average precision than the selective search

method for the part “back”. Figure 3 shows example detec-

tion results of our method and the best baseline (selective

search [36]). It indicates that part detections from our k-

NN proposals have more accurate locations and more pre-

cise shapes than the detections from the selective search

method. It qualitatively demonstrates that our k-NN pro-

posal method plays a crucial role for small semantic parts

detection. With respect to efficiency, the selective search

method proposes an average number of 1270 regions for

each image while our 20-NN proposal method only gen-

erates fewer than 180 proposals. Note that, to have faster

speed and fewer false positives it is extremely important to

have fewer proposals. In conclusion, our top-down k-NN

proposal method is more efficient and more effective than

bottom-up methods for small semantic parts detection.

Comparison with other state-of-the-art methods. Ta-

Methods Head Body

Strong DPM [41, 2] 43.49% 75.15%

Selective search [41, 36] 68.19% 79.82%

LAC [28] 74.00% 96.00%

Ours 93.40% 94.93%

Table 3. Comparison with previous works by Percentage of Cor-

rectly Localized Parts (PCP) on CUB-2011. (To fairly compare,

we use exactly the same 2-part annotations for all methods.)

ble 3 shows the comparison result of our part detection net-

work (DET-NET) and the previous works [28, 41, 2] by Per-

centage of Correctly Localized Parts (PCP). By using the

exactly same 2-part annotations as all the baseline methods,

our part detection network achieves the best overall perfor-

mance. Especially, for the relatively smaller part, head, our

DET-NET outperforms the previous best method (LAC) by

19.4% PCP. We believe that our DET-NET achieves the sig-

nificant improvement on small semantic part detection for

two reasons. One is that our k-NN proposals inherit priors

from the nearest neighbors in the training data, so that many

promising small semantic part candidates are proposed. The

other reason is that the fast RCNN integrated in our DET-

NET performs the region regression to calculate more ac-

curate part locations. In conclusion, our final part detection

result outperforms all the previous works with a large mar-

gin on the CUB-2011 dataset [37].

4.2. Classification Results on CUB­2011

In this section, we evaluate the effectiveness of our part-

abstraction and classification sub-network (CLS-NET), es-

pecially the proposed part-based fully connected (pfc) layer.

A set of experiments are conducted to decide how many pfc

layers and how many parts are the best to use in our CLS-

NET. Here we use the oracle part annotations to avoid any

influence from the part detection sub-network.

The experimental results are shown in Table 4. Com-

pared with other alternative settings (Row 1-4) under ex-

actly the same condition, the 7-part CLS-NET with 1pfc

(Row 5) performs the best. We can draw several insights

from the comparison results. First, it is very important to

build part layers (e.g., pfc layer) in the CNN framework to

abstract and concatenate multiple parts; and it is important

to use more semantic parts (67.02% vs 77.08% vs 79.46%).

Second, one pfc layer is sufficient for part feature abstrac-

tion on this dataset (79.10 vs 79.46%). Last but not the least,

although the whole object has been shown useful in previ-

ous fine-grained classification [16, 28, 41], it is not needed

anymore when more small semantic parts of the object are
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Head Back Belly Breast Wing Tail Leg 

Figure 3. Detections failed by selective search (green boxes) but succeeded by our k-NN proposal method (blue). Red are ground truth.

Row CLS-NET Acc(%)

1 Object only (no pfc) 67.02

2 2-part with 1pfc 77.08

3 7-part with 2pfc 79.10

4 7-part+object with 1pfc 78.17

5 7-part with 1pfc 79.46

6 Ensemble of Row 1-5 81.96

7 7-part with 1pfc, VGGNet 84.69

8 Ensemble, VGGNet 85.71

Table 4. Comparison of different settings of our CLS-NET on

CUB-2011 with oracle part annotations. Ensemble, VGGNet in-

dicates the ensemble of 7-part with 1pfc and 7-part with 2pfc.

integrated in our framework (78.17% vs 79.46%).

We can further improve our best accuracy on CaffeNet to

81.96% using the ensemble of all five models with different

settings. To test the generalization of our method, the results

of models initialized by VGGNet are listed in Table 4. The

final accuracy is boosted to 85.71%.

In conclusion, our 7-part CLS-NET with 1pfc layer is the

best setting for CaffeNet on the CUB-2011. We will use it

as the default setting in all other experiments.

4.3. Classification Results of Our Unified Network

This subsection gives the overall performance of our

SPDA-CNN by feeding the seven semantic parts detected

by the detection sub-network to the part-abstraction and

classification sub-network. We compare the proposed

SPDA-CNN with state-of-the-art previous works on CUB-

2011 and CUB-2010, respectively.

CUB-2011: By directly using the model trained with

oracle part annotations to classify test images using parts

detected by the DET-NET, we achieves 78.15% accuracy

(Table 5) which is only 1.31% lower than the accuracy of

classifying test images using oracle part annotations (Row

5 in Table 4). After fine-tuning the model by training

with part detections, as shown in Table 5, the gap becomes

even smaller. This shows that our SPDA-CNN is robust

to the part detection results. Moreover, our DET-NET is

able to provide very good part detection results, as demon-

strated in subsection 4.1. The comparison results in Ta-

ble 5 show that our method performs much better than pre-

vious part-based methods, including fully supervised meth-

Net Train Test Methods Acc(%)

Berg et al. [3] 56.89

n/a BBox BBox Göring et al. [16] 57.84

+Parts Chai et al. [7] 59.40

Zhang et al. [42] 64.96

Zhang et al. [41] 76.37

Lin et al. [28] 80.26

Caffe BBox BBox Ours 78.15

+Parts Ours+ft 78.93

Our ensemble+ft 81.01

VGG n/a n/a Simon et al. [34] 81.01

VGG BBox BBox Krause et al. [25] 82.80

VGG n/a n/a Lin et al. [29] 84.10

STN n/a n/a Jaderberg et al. [21] 84.10

VGG BBox BBox Ours+ft 84.55

+Parts Our ensemble+ft 85.14

Table 5. Comparison with state-of-the-art methods on CUB-2011.

+ft means fine-tuning the model using the part detections of train-

ing images; Our ensemble models for CaffeNet and VGGNet are

same models shown in Table 4;

Methods Accuracy

Göring et al. [16] 35.94%

Chai et al. [7] 47.30%

Lin et al. [28] 65.25%

Ours 66.14%

Table 6. Comparison with state-of-the-art on CUB-2010.

ods [3, 16, 7, 42, 41, 28] and methods without part annota-

tions [34, 25]. Compared with state-of-the-arts [29, 21], our

method also achieves slightly better performance. More-

over, with more supervision our method can explicitly de-

tect small semantic parts and learn part-specific features.

CUB2010: We also evaluate the generalization of our

method on CUB-2010 [38], which does not provide ora-

cle part annotations. We use the same part detection sub-

network (DET-NET) trained on CUB-2011, but re-train

the classification sub-network (CLS-NET) by only using

data from CUB-2010. Part detections from DET-NET are

used in both training and testing procedures of CLS-NET.

The comparison results of our method with the previous

works [16, 7, 28] in Table 6 illustrate that we achieve the

state-of-the-art accuracy on CUB-2010, indicating the pro-

posed method can be well generalized to other datasets.
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features spotted malar crested masked pattern eyebrow eyering plain eyeline striped capped mean

head 0.81 0.64 0.83 0.72 0.71 0.75 0.63 0.74 0.67 0.77 0.71 0.73

object 0.75 0.63 0.75 0.70 0.67 0.73 0.62 0.71 0.64 0.75 0.67 0.69

other parts 0.70 0.60 0.69 0.62 0.61 0.69 0.58 0.66 0.60 0.72 0.64 0.65

head+object 0.81 0.62 0.81 0.70 0.70 0.73 0.62 0.73 0.65 0.76 0.68 0.71

others+object 0.73 0.61 0.76 0.67 0.65 0.70 0.59 0.69 0.62 0.72 0.65 0.67

Table 7. Area Under the Curve (AUC) for head attribute prediction using different part features in the pfc layer. Object means the whole

object and other parts means all the other 6 parts except head.

4.4. Discussion

By analyzing our part detection and part-based classi-

fication results, we have an interesting observation. That

is, our classification performance based on the 7-part de-

tections is nearly as good as the performance based on the

ground truth part annotations, however, the mAP of our 7-

part detections is only 72.72% at the default 0.5 overlap

threshold. As shown in Figure 4, decreasing the overlap

threshold will increase the PCP for every part. For exam-

ple, by decreasing the threshold to 0.2, we can achieve a

88.24% overall precision (i.e., object PCP) at 94.07% re-

call. The mAP for all parts is increased from 72.72% to

88.75%. In particular, we can achieve much higher PCPs

for the parts whose exact regions are ambiguous. Thus we

conjecture that it might be safer to have a smaller overlap

threshold for the part detection task, compared with gen-

eral object detection tasks. As shown in Figure 5, although

some detections have less than 0.5 overlaps with the ground

truth, they are visually correct. To be consistent with pre-

vious works [28, 41, 2], we use 0.5 as the default overlap

threshold for all our experiments. However, this observa-

tion indicates that our detection results are actually more

accurate than what is shown by its mAP at the 0.5 overlap

threshold. This might be the reason why our classification

performance based on the part detections is nearly as good

as the performance based on the ground truth annotations.

To investigate whether the added part-based fully con-

nected (pfc) layer actually learns part-specific features, we

have done another experiment. We directly use features in

the pfc layer to predict attributes in the parts. As shown

in Table 7, the features from head are consistently better

in predicting head attributes compared to features from the

whole object or from the other parts. Also, adding features

of the whole body does not improve the result, which proves

the features in the pfc layer are part-specific and perform

better for part-related tasks. This experiment also shows

attribute prediction can be one potential application of the

proposed network and we will investigate it in the future.

5. Conclusions

We have presented an end-to-end network (SPDA-CNN)

that performs detection, multiple part localization, and

recognition within one framework for fine-grained classi-

fication. The proposed network has two sub-networks for

detection and recognition, respectively. The detection sub-

network outperforms previous state-of-the-art methods with

0 0.2 0.4 0.6 0.8 1

Overlap (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
C

P
 (

%
)

head

back

belly

breast

leg

wing

tail

average

Figure 4. PCP of part detection network at different overlaps

Breast Leg Back 

Wing Wing Wing 

Leg 

Back 

Back 

Figure 5. Detections (blue) that have less than 0.5 overlaps with

the ground truth annotations (red), but are visually correct.

a large margin for small semantic parts detection, because

of the proposed top-down part region proposal method.

The classification sub-network introduces novel part layers

which can learn discriminative part-specific features. This

part-specific learning representation opens the door for a

deeper understanding of fine-grained categories beyond just

recognizing the class label.
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