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Motivations  
• Our goal: develop scalable algorithms for large-scale image retrieval.  
• Current state-of-the-art methods:  
• Quantized local invariant features indexed by a large vocabulary tree. 
• Holistic features indexed by compact binary hashing codes. 

• Pros and Cons: 
 
 
• Can we unite the strengths of two lines of approaches adaptively? 

Experimental results 
• UKBench: 2550×4=10200 images. N-S Score, top-4 recall rate, max=4 
 
 
 
• Corel-5K: 50×100 = 5000 images. Top-1 precision 
 
 
 

• Holidays: 1491 images in 500 groups. mAP (%) 
 
 

 
• SF Landmark : 803 queries in 1.06M PCI and 638K PFI images 
 
 
 
 
 
 
 
• Efficient online query: less than 1ms for the fusion  
 
 
 
 
 
• Memory cost: 340MB extra storage for the top-50 nearest neighbors for 
1.7M images in the SF Landmark, a small fraction of the inverted indexes. 

Contact email: shaoting@cs.rutgers.edu and myang@nec-labs.com 
Project Page: http://tinyurl.com/image-retrieval 

Our method (2) 
• Step 2: Fuse multiple graphs to one graph: union of the nodes/edges 
and sum of the weights 
 
 
 
 
 
 
• Step 3: Re-rank according to this fused graph: 
• Ranking by a local Page Rank. Perform a link analysis on G, and rank 

the nodes by their connectivity in G by the intelligent surfer model. 
 
 

• Ranking by maximizing the weighted density 
 

 

Challenges 
• The features and algorithms are dramatically different. 
• Hard for the feature-level fusion 
• Hard for the rank aggregation  

• The fusion shall be query specific and database dependent.  
• Hard to learn how to combine across different datasets 

• No supervision and relevance feedback! 
• Hard to evaluate the retrieval quality online 

 
 
 
 
 
 
 

Our method (1) 
• How to evaluate online the quality of retrieve results from methods 
using local or holistic features? 
• Assumption: The consensus degree among top candidate images 
reveals the retrieval quality. 
• The consistency of top candidates’ nearest neighborhoods. 
• Intuition: which case,  i.e., the yellow dot    , is more preferable? 
 

 
 
 
 

 
• A graph-based approach to fusing and re-ranking retrieval results of 
different methods. 
• Step 1: Construct a weighted undirected graph to represent a set of 
retrieval results of a query image q. 
• Edge: the reciprocal neighbor relation 
• Edge weight: the Jaccard similarity between neighborhoods with a 

decaying parameter α w.r.t. to the number of hoops to the query q: 
 
 
 

 

 
 
 

Take home messages 
• Significantly improved the accuracy over individual retrieval methods. 
• Required a minimal computational overhead and acceptable storage. 
• No supervision, few parameters, easy to implement and reproduce. 
 

the query 

top-5 NN 

Little overlap of   ‘s NNs to    ‘s NNs Large overlap of   ‘s NNs to    ‘s NNs 

Query images: from smart phones 
Database images: 
PCI: perspective central images 
PFI: perspective frontal images 
Obtained from panoramic images 


