

Query Specific Fusion for Image Retrieval

NEC Laboratories America Relentless passion for innovation

Shaoting Zhang², Ming Yang¹, Timothee Cour¹, Kai Yu¹, Dimitris N. Metaxas² ¹NEC Laboratories America, Inc., Cupertino, CA, USA ²Dept. of Computer Science, Rutgers University, Piscataway, NJ, USA

Motivations

- Our goal: develop scalable algorithms for large-scale image retrieval. • Current state-of-the-art methods:
 - Quantized local invariant features indexed by a large vocabulary tree.
 - Holistic features indexed by compact binary hashing codes.

Pros and Cons:		Retrieval speed	Memory usage	Retrieval precision	applications	Image properties to attend to
	Local feat.	fast	high	high	near duplicate	local patterns
	Global feat.	faster	low	low	general images	global statistics

Can we unite the strengths of two lines of approaches adaptively?

Challenges

- The features and algorithms are dramatically different.
 - Hard for the feature-level fusion
 - Hard for the rank aggregation
- The fusion shall be query specific and database dependent.
 - Hard to learn how to combine across different datasets
- No supervision and relevance feedback!
 - Hard to evaluate the retrieval quality *online*

• Step 2: Fuse multiple graphs to one graph: union of the nodes/edges and sum of the weights

- Step 3: Re-rank according to this fused graph:
- Ranking by a local Page Rank. Perform a link analysis on G, and rank the nodes by their connectivity in G by the intelligent surfer model.
 - $|V| \times |V|$ transition matrix **P** as $P_{ii'} = w(i, i') / \deg(i)$

 $p^{t+1} = (1-\beta)\pi + \beta \mathbf{P}^T p^t.$

• Ranking by maximizing the weighted density

 $\sum_{(i,i')\in E'} w(i,i')$ G' = argmax $G' = (V', E', w) \subset G: q \in V'$

Experimental results

• UKBench: 2550 × 4=10200 images. N-S Score, top-4 recall rate, max=4

(a) Holistic features yield more satisfactory results than local features.

(b) Local features yield more satisfactory results than holistic feature.

Our method (1)

 How to evaluate online the quality of retrieve results from methods using local or holistic features?

 Assumption: The consensus degree among top candidate images reveals the retrieval quality.

- The consistency of top candidates' nearest neighborhoods.
- Intuition: which case, *i.e.*, the yellow dot •, is more preferable?

Little overlap of \circ 's NNs to \star 's NNs

Large overlap of \circ 's NNs to \star 's NNs

Jégou	Qin	HSV	VOC	HSV	VOC	Rank	SVM	Graph	Graph
<i>et al</i> . [11]	<i>et al.</i> [12]		[28]	graph	graph	aggregation	fusion	PageRank	density
3.68	3.67	3.17	3.54	3.28	3.67	3.47	3.56	3.76	3.77

• **Corel-5K:** 50 × 100 = 5000 images. Top-1 precision

VOC GIST	VOC-graph	GIST-graph	SVM-fusion	Graph-PageRank	Graph-density
46.66 46.16	51.50	50.72	51.34	51.76	54.62

• Holidays: 1491 images in 500 groups. mAP (%)

Jégou et al.	Jégou et al.	HSV	VOC	Rank	SVM	Graph	Graph
[17]	[31]		[28]	aggregation	fusion	PageRank	density
81.3	83.9	62.60	77.50	78.62	79.04	84.56	84.64

• SF Landmark : 803 queries in 1.06M PCI and 638K PFI images

Query images: from smart phones Database images: PCI: *perspective central images* PFI: *perspective frontal images* Obtained from panoramic images

(b) PFIs (a) PCIs • Efficient online query: less than 1ms for the fusion

- A graph-based approach to fusing and re-ranking retrieval results of different methods.
- Step 1: Construct a weighted undirected graph to represent a set of retrieval results of a query image q.
 - Edge: the *reciprocal* neighbor relation
 - Edge weight: the Jaccard similarity between neighborhoods with a decaying parameter α *w.r.t.* to the number of hoops to the query q:

Dataset	# of images	VOC	HSV/GIST	Graph-fusion t	t_r (ms)
UKbench	10200	85	1	< 1	87
Corel-5K	4999	76	< 1	< 1	78
Holidays	1490	72	< 1	< 1	73
PCI-SFLandmark	1,062,468	645	103	< 1	749
PFI-SFLandmark	638,090	467	64	< 1	532

• Memory cost: 340MB extra storage for the top-50 nearest neighbors for 1.7M images in the SF Landmark, a small fraction of the inverted indexes.

Take home messages

• Significantly improved the accuracy over individual retrieval methods. • Required a minimal computational overhead and acceptable storage. • No supervision, few parameters, easy to implement and reproduce.

Contact email: shaoting@cs.rutgers.edu and myang@nec-labs.com Project Page: http://tinyurl.com/image-retrieval