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Background: Liver Surgery Planning 

segmentation in liver surgery 

planning 

― User interaction 

― Hard to achieve robust results 

― Normal person VS patients 
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Background: Segmentation of Liver 

Challenges  of Segmentation 

 

 

 

 

Liver segmentation method 
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Background: Statistical Shape Model 

Statistical shape model  

― Better performance than methods using appearance cues 

― Address over-segmentation and under-segmentation 

Problems in modeling liver shape 

― Complex variation 

― gross errors and outliers 

― local details 

 



Methods 

1st, Sparse Shape Composition(SSC)  

― Learn the shape from the shape repository 

― optimized sparse linear combination of shapes in the repository 

― Explicitly model gross errors 
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Methods 

1st, Sparse Shape Composition(SSC)  

― Learn the shape from the shape repository 
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― Explicitly model gross errors 
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Methods 

2nd, Accurate segmentation 

― Shape prior + Fast Marching  Level Set 

― Seeds points results from histogram analysis 
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Results 

Shape repository: manually segmented result for training (50 shapes) 

 

 

Initial liver segmentation: Simple region growing method 

 

Output of SSC: robustness to outliers 

 

 

The initial segmentation results (a, c) and their corresponding shape priors (b, d).  

Gross errors is corrected 



Results 

Segmentation results 

  

  

Accurate segmentation of hepatic parenchyma, portal veins and hepatic veins.  

Shape prior is not used SSC Shape prior is used 

Compare with PCA 

Input shape PCA shape prior SSC shape prior 

Both reconstruct under-segmentation 



Results 

Segmentation results 

  

  

Accurate segmentation of hepatic parenchyma, portal veins and hepatic veins.  

Shape prior is not used SSC Shape prior is used 

Compare with PCA 

Input shape PCA shape prior SSC shape prior 

Local detail is preserved Local detail is lost 



Results 

Segmentation results: 

Shape prior 
not used 

SSC 
Shape prior 

is used 

Liver segment approximation 



Evaluation (8 patients) 

Sensitivity and specificity 
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Sensitivity 0.902 0.878 0.925 0.896 

Specificity 0.961 0.983 0.994 0.987 

hepatic parenchyma portal veins hepatic veins tumours 

1.08 1.06 0.90 1.15 



Conclusion 

Advantage of Sparse Shape Composition for liver  

― Model the complex variation of liver  

― Address outliers and preserve details 

The proposed segmentation framework 

― Accurate segmentation of liver and intrahepatic vessels 

― Robust to clinical liver image data 
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