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Abstract
The k-support-norm regularized minimization has
recently been applied with success to sparse pre-
diction problems. The proximal gradient method
is conventionally used to minimize this compos-
ite model. However it tends to suffer from expen-
sive iteration cost as the proximity operator associ-
ated with k-support-norm needs exhaustive search-
ing operations and thus could be time consuming
in large scale settings. In this paper, we refor-
mulate the k-support-norm regularized formulation
into an identical constrained formulation and pro-
pose a fully corrective Frank-Wolfe algorithm to
minimize the constrained model. Our method is in-
spired by an interesting observation that the convex
hull structure of the k-support-norm ball allows the
application of Frank-Wolfe-type algorithms with
low iteration complexity. The convergence behav-
ior of the proposed algorithm is analyzed. Ex-
tensive numerical results in learning tasks includ-
ing logistic regression and matrix pursuit demon-
strate the substantially improved computational ef-
ficiency of our algorithm over the state-of-the-art
proximal gradient algorithms.

1 Introduction
In many sparsity inducing machine learning problems, a com-
mon practice is to use the `

1

norm as a convex relaxation
of the model parameter cardinality constraint. The `

1

norm,
however, tends to shrink excessive number of variables to ze-
ros, regardless the potential correlation among the variables.
In order to alleviate such an over-shrinkage issue of `

1

-norm,
numerous methods including elastic net [Zou and Hastie,
2005] and trace Lasso [Grave et al., 2011] have been pro-
posed in literature. All of these methods tend to smooth the
output parameters by averaging similar features rather than
selecting out a single one. More recently, k-support-norm
k ·k

sp

k

is proposed as a new alternative that provides the tight-
est convex relaxation of cardinality on the Euclidean norm

⇤These match the formatting instructions of IJCAI-07. The sup-
port of IJCAI, Inc. is acknowledged.

unit ball [Argyriou et al., 2012]. Formally, the k-support-
norm of a vector w 2 Rp is defined as

kwksp
k

:= min

8
<

:
X

g2Gk

kv
g

k2 : supp(v
g

) ✓ g, w =
X

g2Gk

v

g

9
=

; ,

where G

k

denotes the set of all subsets of {1, 2, ..., p} of car-
dinality at most k. More properties of k-support-norm are
analyzed in [Argyriou et al., 2012].

As a regularizer, the k-support-norm is characterized by si-
multaneously selecting a few relevant groups and penalizing
the `

2

-norm of the selected individual groups. The follow-
ing k-support-norm regularized model was considered in [Ar-
gyriou et al., 2012] for sparse prediction tasks:

min

w

f(w) + �(kwksp
k

)

2, (1)

where f(w) is a convex and differentiable objective function.
The parameter k is regarded as an upper bound estimation of
the number of non-zero elements in w. It has been shown that
this model leads to improved learning guarantees as well as
better algorithmic stability [Argyriou et al., 2012].
Motivation One issue that hinders the applicability of the k-
support-norm regularized model (1) is its high computational
complexity in large scale settings. Indeed, proximal gradi-
ent methods are conventionally used for optimizing the com-
posite minimization problem in (1) [Argyriou et al., 2012;
Lai et al., 2014; Eriksson et al., 2015]. Given the gradient
vector, the per-iteration computational cost of proximal gra-
dient methods is dominated by an proximity operator of the
following form:

w⇤
= argmin

w

1

2

kw � vk2
2

+ �(kwksp
k

)

2. (2)

In the work of [Argyriou et al., 2012], a closed form solution
of (2) was derived based on an exhaustive search strategy.
However, the complexity of such a strategy is O(p(k+log p))
which is computationally expensive when p is large. Despite
significant speed-ups have been reported in [Lai et al., 2014;
Eriksson et al., 2015] by using binary search, those methods
are still expensive for large scale problems.

It has been known that the k-support-norm ball Bk,sp

$

:=

{w 2 Rp

: kwksp
k

 $} is equivalent to the convex hull
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of C

(2)

k,$

= {w 2 Rp

: kwk
0

 k, kwk
2

 $}. In this
sense, k-support-norm ball B

k,sp

$

provides a convex enve-
lope of the nonconvex set C(2)

k,$

. Recently, Frank-Wolfe-type
methods for minimizing a convex objective over a convex
hull have received wide interests in optimization and ma-
chine learning [Zhang, 2003; Shalev-Shwartz et al., 2010;
Yuan and Yan, 2013]. These algorithms have been shown
to achieve satisfying trade-off between convergence rate and
iteration complexity. In this paper, inspired by the success
of these algorithms, we consider applying the Frank-Wolfe
method to solve the composite optimization problem (1).
Challenge and Contribution In this paper we propose to
convert the k-support-norm regularized formulation into an
identical constrained formulation by introducing an aug-
mented variable as the bound of the regularizer (kwksp

k

)

2. We
then develop a fully corrective variant of the Frank-Wolfe al-
gorithm to optimize the augmented model. The proposed al-
gorithm is called k-FCFW in the following context. The con-
vergence rate of the proposed algorithm is analyzed. Particu-
larly, we prove that the proposed algorithm converges linearly
under proper conditions. Our this result is stronger than the
sublinear rate of convergence obtained in [Harchaoui et al.,
2015] for norm regularized minimization with Frank-Wolfe
methods. The advantage of the proposed algorithm over prior
algorithms is demonstrated by empirical results in various
learning tasks.

2 Related Work
2.1 k-Support-Norm Regularized Learning
The k-support-norm regularized learning models have been
extensively studied in machine learning and computer vi-
sion. Multiple k-support-norm regularized convex models
were investigated in [Blaschko, 2013]. The applications of k-
support-norm to various computer vision problems have been
explored in [Lai et al., 2014]. The k-support-norm was ap-
plied to generalized dantzig selector for linear models [Chat-
terjee et al., 2014]. In this paper the proposed algorithm ap-
plies to first-order k-support-norm regularized minimization
problem, which is different from the squared k-support-norm
that we consider in this work and [Argyriou et al., 2012; Lai
et al., 2014; Eriksson et al., 2015]. The authors of [Belilovsky
et al., 2015b] showed that it is helpful to use k-support-
norm regularization in fMRI data analysis including classi-
fication, regression and data visualization. In [Belilovsky et
al., 2015a], total variation penalty is incorporated in the k-
support framework and applied in image and neuroscience
data analysis.

2.2 Frank-Wolfe Method
The history of Frank-Wolfe method dates back to [Frank and
Wolfe, 1956] for constrained optimization problem

min

w

f(w) s.t. w 2 D,

where D is a polytope convex set. It is also known as con-
ditional gradient method. Due to the potential of efficiency
improvement when applied in solving minimization problem
with some forms of constraint, recently there is an increasing

Algorithm 1: k-FCFW Algorithm for k-support-norm
regularized problem.

Input : f(x), k, �.
Initialization: w(0)

= 0, ✓(0) = 0, U = w(0), V = ✓(0).
for t = 1, 2, ... do

(S1) Compute rf(w(t�1)

).
(S2) Solve the linear projection problem

{u(t), v(t)} = argmin

u,v

hrf(w(t�1)

), ui+ �v

s.t. (kuksp
k

)

2

 v.

(3)

(S3) Update

U (t)

= [U (t�1), u(t)

], V (t)

= [V (t�1), v(t)].

(S4) Compute

↵(t)

= min

↵24t

f(U (t)↵) + �V (t)↵, (4)

where 4

t

= {↵ 2 Rt+1

: ↵ � 0, k↵k
1

= 1}.
(S5) Update w(t)

= U (t)↵(t), ✓(t) = V (t)↵(t).
end
Output: w(t).

trend to revisit and restudy this method. The detail of original
Frank-Wolfe method, its variants and algorithm analysis can
be found in [Jaggi, 2013; Garber and Hazan, 2014]. Frank-
Wolfe-type methods have been developed to solve numerous
optimization problems including structural SVM [Lacoste-
Julien et al., 2013], trace norm regularization problem [Dudik
et al., 2012] and atomic norm constrained problem [Rao et
al., 2015]. In sparse learning, a number of Frank-Wolfe-type
methods, e.g., forward greedy selection [Shalev-Shwartz et
al., 2010] and gradient Lasso [Kim and Kim, 2004], have
been developed to solve sparsity constrained problems. In
the context of boosting classification, the restricted gradient
projection algorithms stated in [Grubb and Bagnell, 2011]
is essentially a forward greedy selection method over `

2

-
functional space.

3 The k-FCFW method for k-Support Norm
Regularized Minimization

To apply the Frank-Wolfe method, we reformulate (1) into a
constrained optimization problem:

min

w,✓

G(w, ✓;�) := f(w) + �✓ s.t. (kwksp
k

)

2

 ✓.

Here ✓ is an augmented variable bounding the term (kwksp
k

)

2.
We introduce in §3.1 the k-FCFW algorithm for solving the
above constrained formulation. The convergence rate of k-
FCFW will be analyzed in §3.2.

3.1 Algorithm Description
The k-FCFW algorithm for k-support-norm regularized min-
imization is outlined in Algorithm 1. As is known that the
k-support-norm ball Bk,sp

$

:= {w 2 Rp

: kwksp
k

 $} is
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equivalent to the convex hull of C(2)

k,$

= {w 2 Rp

: kwk
0



k, kwk
2

 $}. That is,

Bk,sp

$

= conv(C(2)
k,$

) =

8
><

>:

X

w2C(2)
k,$

↵

w

w : ↵
w

� 0,
X

w

↵

w

= 1

9
>=

>;
.

Therefore, given v > 0, the optimal u of (3) admits the fol-
lowing close-form solution:

u = �

p

vr
k

f(w(t�1)

)

kr

k

f(w(t�1)

)k

, (5)

where r

k

f(w(t�1)

) denotes a truncated version of
rf(w(t�1)

) with its top k (in magnitude) entries pre-
served. By substituting this back to (3) we get v(t) through
the following quadratic program:

v(t) = argmin

v>0

�kr

k

f(w(t�1)

)k

p

v + �v.

Obviously v(t) =
⇣

krkf(w
(t�1)

)k
2�

⌘

2

, and thus,

u(t)

= �

p

v(t)r
k

f(w(t�1)

)

kr

k

f(w(t�1)

)k

= �

r

k

f(w(t�1)

)

2�
.

At each time instance t, we record all previous up-
dates in U (t)

= {w(0), u(1), ..., u(t)

} and V (t)

=

{✓(0), v(1), v(2), ..., v(t)}. At the t-th iteration, the optimal
value of w(t) and ✓(t) are jointly searched on the convex hull
define by U (t) and V (t). The subproblem (4) of estimating
↵(t) is a simplex constrained smooth minimization problem.
The scale of such a problem is dominated by the value of t.
This subproblem can be solved via off-the-shelf algorithms
such as the projected quasi-Newton (PQN) method [Schmidt
et al., 2009] as used in our implementation.

It is noteworthy that the subproblem (3) is equivalent to the
following k-support-norm regularized linear program:

u(t)

= argmin

u

hrf(w(t�1)

), ui+ �(kuksp
k

)

2.

This is in contrast to the proximal gradient method which
solves the quadratic proximity operator (2) at each iteration.
Apparently the former is less expensive to solve than the lat-
ter which involves exhaustive search. In addition, when t is of
moderate value and warm start is adopted to initialize the pa-
rameters, the subproblem (4) can often be accurately solved
with very few iterations. In sparse learning problem the k
value is often much smaller than model parameter dimension
hence the overall computational cost of k-FCFW is expected
to be lower than the proximal gradient algorithms.

Given a constant radius $
c

> 0, the k-support-norm con-
strained minimization problem

min

w

f(w) s.t. kwksp
k

 $
c

(6)

is essentially a special case of the regularized form by directly
assigning ✓ = $2

c

. The proposed algorithm can be easily
modified to solve the constrained model (6).

3.2 Convergence Analysis
To analyze the model convergence, we need the following key
technical conditions imposed on the curvature of the objective
function f restricted on sparse subspaces.
Definition 1 (Smoothness and restricted strong convexity).
We say f is L-smooth if there exists a positive constant L
such that for any w and w0,

f(w0
)� f(w)� hrf(w), w0

� wi 
L

2

kw � w0
k

2. (7)

We say f is ⇢(s)-strongly convex at sparsity level s, if there
exists positive constants ⇢(s) such that for any kw � w0

k

0



s,

f(w0
)� f(w)� hrf(w), w0

� wi �
⇢(s)

2

kw � w0
k

2. (8)

In the analysis to follow, we define

F (w;�) := f(w) + �(kwksp
k

)

2,

and
w̄ = argmin

w

F (w;�).

Let s̄ = kw̄k
0

and ¯✓ = (kw̄ksp
k

)

2. Consider the radius r given
by

r = max

⇢

kr

k

f(w)k

2�
: F (w;�)  F (w(0)

;�)

�

.

We now analyze the convergence of Algorithm 1. Before pre-
senting the main result, we need some preliminaries.

Lemma 1. There exist ¯U = [ū
1

, ..., ū
¯

l

] 2 Rp⇥¯

l with kū
i

k

0



k, kū
i

k

2

=

p

¯✓, and ↵̄ 2 4

¯

l

such that

w̄ =

¯U ↵̄.

Please refer to Appendix A.1 for the proof of Lemma 1. In
the following analysis, we will consider such a decomposition
w̄ =

¯U ↵̄ as guaranteed by Lemma 1. Given a matrix M , we
write its mathcal version M as a vector set consisting of the
columns of M . Similarly, given a set M of vectors of the
same size, we denote M be a matrix whose columns are the
elements of M. Let �

min

(M) be the smallest singular value
of matrix M . We establish in the following theorem a linear
rate of convergence for Algorithm 1.

Theorem 1. Let s = max

t

kw(t)

k

0

. Let M(t)

=

¯

U [ U

(t).
Assume that there exists a ¯� > 0 such that �

min

(M (t)

) �

¯� for all t. Assume that f is L-smooth and ⇢(s + s̄)-
strongly convex. Given ✏ > 0, let us run Algorithm 1 with
t � 1

⇣

ln

h

F (w

(0)
;�)�F (w̄;�)

✏

i

where ⇣ := min

n

⇢(s+s̄)

¯

�

4

¯

lLr

2 , 1

2

o

.

Then Algorithm 1 will output w(t) satisfying

F (w(t)

;�)  F (w̄;�) + ✏.

The proof of Theorem 1 is given in Appendix A.2.
Remark 1. In general constrained minimization problems,
the Frank-Wolfe method is known to have O(

1

t

) conver-
gence rate [Jaggi, 2013] and O(

1

t

2 ) if the constraint set is

1762



strongly-convex [Garber and Hazan, 2014]. Several lin-
ear convergence guarantees are established by adding var-
ious specific assumptions to either constraint set or loss
function in literatures such as [Beck and Teboulle, 2004;
Ñanculef et al., 2014], but they are not directly applicable to
our problem. In a recent work of [Lacoste-Julien and Jaggi,
2015], a global linear convergence rate is proved for the con-
strained optimization on polytope. Their analysis, however,
does not fit for our algorithm as the constraint (kwksp

k

)

2

 v
is a k-support-norm cone, rather than a polytope. This im-
poses extra challenges in analysis. Another related work
is [Harchaoui et al., 2015] which also applies Frank-Wolfe
method to regularized minimization problems. However it
is restrictive as it requires an estimation of the bound of the
regularizer which is hard to know in practice. Also, the sub-
linear convergence rate established in that paper is weaker
than the linear rate proved in Theorem 1.
Remark 2. In Algorithm 1 we have required the subprob-
lem (4) in Step (S4) to be solved exactly. This could be
be computationally demanding if the objective function f is
highly nonlinear and t is relatively large. Instead of solving
the subproblem (4) exactly, a more realistic option in prac-
tice is to find a suboptimal solution up to a precision " > 0

w.r.t. the first-order optimality condition. That is, {w(t), ✓(t)}
satisfy for any w = U (t)↵ and ✓ = V (t)↵,

hrf(w(t�1)

), w � w(t�1)

i+ �(✓ � v(t�1)

) � �".

Following the similar arguments in the proof of Theorem 1
we can be prove that F (w(t)

;�)  F (w̄;�) + ✏+O(") after
t = O

�

ln(

1

✏

)

�

steps of iteration. In other words, the op-
timization error of the subproblem (4) does not accumulate
during iteration.

4 Experiments
This section is devoted to showing the empirical performance
of k-FCFW and comparing it to the state-of-the-art algo-
rithms for k-support-norm regularized minimization. All the
considered algorithms are implemented in Matlab and tested
on a computer equipped with 3.0GHz CPU and 32GB RAM.

4.1 k-Support-Norm L2-Logistic Regression
Given a binary training set {x

m

, y
m

}

M

m=1

, x
m

2 Rp, y
m

2

{�1, 1}, the k-support-norm regularized logistic regression
problem is formulated as

min

w

F (w) =
M

X

m=1

`(w;x
m

, y
m

)+

⌧

2

kwk2+�(kwksp
k

)

2, (9)

where `(w;x
m

, y
m

) = log

�

1 + exp(�y
m

w>x
m

)

�

is the lo-
gistic loss on a training pair (x

m

, y
m

). The parameter ⌧ con-
trols the strong convexity of the loss function.

We test the algorithm efficiency on a synthetic dataset.
The model parameter ground truth w

gt

is designed to be a
p-dimension vector as follows:

w
gt

= [1, 1, · · · , 1
| {z }

p

0

, 0, 0, · · · , 0
| {z }

p�p

0

].

Within the supporting set we partition the feature dimen-
sion into g groups. Each group of {x

m,1

, x
m,2

, ..., x
m,p

0
/g

},
..., {x

m,(g�1)p

0
/g+1

, ..., x
m,p

0
} follows normal distribution

that the mean value of each group is drawn from N (0, 1).
Other dimensions are drawn from N (0, 1) as noise. Fi-
nally x

m

is normalized by x
m

= x
m

/kx
m

k. The data la-
bel {y

m

}

M

m=1

follows Bernoulli distribution with probability

P(y
m

= 1|x
m

) =

exp(w

>
gtxm)

1+exp(w

>
gtxm)

. The task is designed as
selecting the top k most discriminative features for classifica-
tion using logistic regression model through solving (9).

We produce the training data by setting M = 500, p =

10

6, g = 20, p0 = 10000, k = 2000, 4000, 6000, 8000 and
10000, respectively. � is selected by grid search according
to the testing result on a validation set of size 100. We set
the termination criterion as |F (w

(t)
)�F (w

(t�1)
)|

F (w

(t�1)
)

 10

�4. We
replicate the experiment 10 times and report the mean of the
numerical results.

We compare the efficiency of k-FCFW with three state-of-
the-art proximal gradient methods: (1) the Box Norm solver
(denoted by BN) proposed in [McDonald et al., 2014]; (2)
the binary search based solver proposed in [Lai et al., 2014]
(denoted by BS); and (3) the solver proposed in [Eriksson et
al., 2015] which tries to find the active set (AS) by a two-
step binary searching strategy. All of these proximal gradient
solvers are implemented in the framework of FISTA [Beck
and Teboulle, 2009].

The running time of the considered algorithms is shown in
Figure 1(a). It can be observed that our method is signifi-
cantly faster than all the three comparing solvers.

We also compare the efficiency of k-FCFW with
ADMM [Parikh and Boyd, 2013] which is another popular
framework for regularized minimization problems. Since AS
has been observed to be superior to the other considered prox-
imity operator solvers, we equip ADMM with AS as its prox-
imity operator solver. The running time curves of ADMM-
AS are drawn in Figure 1(a). Clearly, ADMM-AS is inferior
to k-FCFW and the proximal gradient algorithms as well. Ac-
tually, we observe that ADMM-AS fails to converge to the de-
sired accuracy given maximum number of iterations. In Fig-
ure 1(b), we plot the convergence curves of the considered
algorithms under k = 2000 and 10000. It can be observed
that our method needs significant less number of iterations to
reach comparable optimization accuracy.

4.2 k-Support-Norm Matrix Pursuit
In this group of experiments, we apply the proposed method
to the k-support-norm regularized matrix pursuit problem. In
many graph based machine learning algorithms such as semi-
supervised classification and subspace segmentation, a key
step is learning the sample affinity matrix [Liu et al., 2010;
Yuan and Li, 2014]. Matrix pursuit has been proved to be an
effective approach. The results of [Lai et al., 2014] indicate
that the k-support-norm regularized matrix pursuit method
achieves superior performance in various applications. The
k-support-norm regularized matrix pursuit is formulated as:

min

W2Rn⇥n

1

2

kX �XWk

2

F

+ �(kvec(W )k

sp

k

)

2, (10)
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(b)(a)

Figure 1: Results on synthetic dataset: (a) Running time (in
second) curves of the considered comparing methods under
different values of k. (b) Convergence curves of the consid-
ered methods under k = 2000 and 10000. All the curves are
drawn from the starting point F (w(1)

).

(a) MNIST-1000 dataset (b) USPS-2000 dataset

Figure 2: Running time (in second) curves of the consid-
ered methods on (a) MNIST-1000 dataset and (b) USPS-2000
dataset.

where X 2 Rd⇥n is the data matrix with n samples in d-
dimension space and vec(W ) denotes the vectorization of W .

The MNIST [LeCun et al., 1998] and USPS [Hull, 1994]
datasets are adopted for testing. For MNIST dataset, we re-
size each image into 14 ⇥ 14 then normalize the gray value
into [0, 1]. The pixel values are then vectorized as image fea-
ture. The USPS dataset is preprocessed by [Cai et al., 2011].
Each image is represented by a 256-dimension feature vector
and the feature values are normalized into [�1, 1]. Each im-
age of both datasets are further normalized to be a unit vector.
We select 100 images per digit from MNIST and 200 images
per digit from USPS hence the size of datasets are 1000 and
2000, respectively. We use the same optimization termina-
tion criterion as in the previous experiment. The algorithms
are tested under k = 4000, 6000, 8000, 10000 and 12000 in
the k-support-norm. The regularization parameter is set to be
� = 20.

We first compare k-FCFW with three FISTA algorithms
that respectively employ proximity operator solver BN, BS
and AS. The comparison of average time cost over 10 repli-
cations is illustrated in Figure 2. The time cost curves of
ADMM-AS are also shown in Figure 2. The convergence
curves of the considered methods evaluated by F (W ) when
k = 4000 and 12000 are shown in Figure 3. From the results
we can see that in these cases, k-FCFW is the most efficient
one for optimization. As the value of k increases, the effi-
ciency advantage of k-FCFW gets more significant.

(a) MNIST-1000 dataset (b) USPS-2000 dataset

Figure 3: The convergence curves of considered methods
on (a) MNIST-1000 and (b) USPS-2000 datasets under k =

4000 and 12000. The starting point of each curve is F (W (1)

).

5 Conclusion
In this paper, we proposed k-FCFW as a fully corrective
Frank-Wolfe algorithm for optimizing the k-support-norm
regularized loss minimization problem. We have established
a linear rate of convergence for the proposed algorithm,
which to our knowledge is new for Frank-Wolfe-type algo-
rithms when applied to composite formulation. Comparing to
the conventionally adopted proximal gradient algorithms and
ADMM, k-FCFW has superior rate of convergence in the-
ory and practice. Numerical results in logistic regression and
matrix pursuit applications confirmed that k-FCFW is signif-
icantly more efficient than several state-of-the-art proximal
gradient descent methods, especially in large scale settings.
To conclude, both theoretical analysis and empirical obser-
vations suggest that k-FCFW is a computationally attractive
alternative to the proximal gradient algorithms for solving the
k-support-norm regularized minimization problems. As a fu-
ture study in this line, we will investigate the generalization
of k-FCFW to generic group-sparsity-norm regularized min-
imization problems of which the model considered in this pa-
per is a special case.

A Appendix
A.1 Proof of Lemma 1
Proof. Consider

˜

U = argmin

U

(

X

u2U
kuk

2

: kuk
0

 k, w̄ =

X

u2U
u

)

.

Let ¯l = |

˜

U| and ˜

U = {ũ
i

}

¯

l

i=1

. Based on the definition of
k-support-norm we have that w̄ =

P

i

ũ
i

and
P

i

kũ
i

k

2

=

kw̄ksp
k

=

p

¯✓. We construct ¯U = [ū
1

, ..., ū
¯

l

] with ū
i

defined
by ū

i

=

p

¯✓ũ
i

/kũ
i

k. Then we can show that w̄ admits a de-
composition of w̄ =

¯U ↵̄ with some ↵̄ lies in a ¯l-dimensional
simplex 4

¯

l

. Indeed, since w̄ =

P

i

ũ
i

=

P

i

ū
i

(kũ
i

k/
p

¯✓),
we may define ↵̄

i

= kũ
i

k/
p

¯✓ such that
P

i

↵̄
i

= 1.

A.2 Proof of Theorem 1
Proof. From the definition of G(w, ✓;�), the step (S4) of Al-
gorithm 1 and the assumption that f(w) is the L-smooth func-
tion, we have
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G(w(t)
, ✓

(t);�)

=f(U (t)
↵

(t)) + �V

(t)
↵

(t)

f((1� ⌘)U (t�1)
↵

(t�1) + ⌘u

(t))+

�((1� ⌘)V (t�1)
↵

(t�1) + ⌘v

(t))

=f((1� ⌘)w(t�1) + ⌘u

(t)) + �((1� ⌘)✓(t�1) + ⌘v

(t))

f(w(t�1)) + ⌘�(u(t)) + 2⌘2
r

2
L+ �[(1� ⌘)✓(t�1) + ⌘v

(t)]

=f(w(t�1)) + �✓

(t�1) + ⌘�(u(t)
, v

(t)) + 2⌘2
r

2
L

=G(w(t�1)
, ✓

(t�1);�) + ⌘�(u(t)
, v

(t)) + 2⌘2
r

2
L.

where

�(u(t)

) = hrf(w(t�1)

), u(t)

� w(t�1)

i,

�(u(t), v(t)) = �(u(t)

) + �(v(t) � ✓(t�1)

).

For simplicity, let us now denote x(t)

= [w(t)

; ✓(t)] 2 Rd+1

as the concatenation of w(t) and ✓(t). We define ¯V =

[

¯✓, ..., ¯✓] 2 R¯

l. Similarly, we denote ¯X = [

¯U ;

¯V ] 2

R(p+1)⇥¯

l and X(t)

= [U (t)

;V (t)

] 2 R(p+1)⇥t. By writing
G(x(t)

;�) = G(w(t), ✓(t);�), the preceding inequality can
be equivalently written as

G(x(t)

;�) G(x(t�1)

;�) + ⌘hrG(x(t�1)

), x(t)

� x(t�1)

i

+ 2⌘2r2L.

Let X c

:=

¯

X \ X

(t�1). Assume X

c

6= ;. From the update
rule of {✓(t), v(t)} in (S2) we know the following inequality
holds for any x 2 X

c:

hrG(x(t�1)

), x(t)

�x(t�1)

i  hrG(x(t�1),�), x�x(t�1)

i.

Let ⇠ =

P

x2X c ↵̄
x

. From the above two inequalities we get

⇠G(x(t);�) ⇠G(x(t�1);�) + ⌘[
X

x2Xc

↵̄

x

hrG(x(t�1);�), xi

� ⇠hrG(x(t�1);�), x(t�1)i] + 2⌘2
r

2
⇠L.

(11)
Since

P

x2X (t�1) ↵̄
x

/(1 � ⇠) = 1, from the optimality of
↵(t�1) (see the step (S4)) we can derive that

hrG(x(t�1)

;�),
X

x2X (t�1)

↵̄
x

x/(1� ⇠)� x(t�1)

i � 0. (12)

Note that ↵(t�1)

x

= 0 for x /2 X

(t�1) and ↵̄
x

= 0 for x /2 ¯

X .
Therefore

X

x2X c

↵̄
x

hrG(x(t�1)

;�), xi

=

X

x2X c

hrG(x(t�1)

;�), ↵̄
x

x� (1� ⇠)↵(t�1)

x

xi



X

x2X (t�1)[ ¯X

hrG(x(t�1)

;�), ↵̄
x

x� (1� ⇠)↵(t�1)

x

xi

=hrG(x(t�1)

;�), x̄� (1� ⇠)x(t�1)

i

=hrG(x(t�1)

;�), x̄� x(t�1)

i+ ⇠hrG(x(t�1)

;�), x(t�1)

i,

where the inequality follows (12). Combining the preceding
inequality with (8) we obtain

X

x2X c

↵̄
x

hrG(x(t�1)

;�), xi � ⇠hrG(x(t�1)

;�), x(t�1)

i

hrG(x(t�1)

;�), x̄� x(t�1)

i

=hrf(w(t�1)

), w̄ � w(t�1)

i+ �(¯✓ � ✓(t�1)

)

f(w̄)� f(w(t�1)

)�

⇢(s+ s̄)

2

kw(t�1)

� w̄k2

+ �(¯✓ � ✓(t�1)

)

G(x̄;�)�G(x(t�1)

;�)

�

⇢(s+ s̄)

2

k

X

u2U(t�1)

↵
u

u�

X

u2 ¯U

↵̄
u

uk2

G(x̄)�G(x(t�1)

)�

⇢(s+ s̄) ¯�

2

X

u2 ¯U\U(t�1)

↵̄2

u

G(x̄)�G(x(t�1)

)�

⇢(s+ s̄) ¯�⇠2

2

¯l
,

where the last inequality follows
P

u2 ¯U\U(t�1) ↵̄2

u

�

(

P

u2 ¯U\U(t�1) ↵̄
u

)

2/¯l. By combining the above with (11) we
get

⇠G(x(t)

;�) ⇠G(x(t�1)

;�)� ⌘[G(x(t�1)

;�)�G(x̄;�)+

⇢(s+ s̄) ¯�⇠2

2

¯l
] + 2⌘2r2⇠L. (13)

Let us choose ⌘ = ⇠⇣  1 in the above inequality with ⇣ :=

min

n

⇢(s+s̄)

¯

�

4

¯

lLr

2 , 1

2

o

. Then we have

G(x(t)

;�)  G(x(t�1)

;�)� ⇣(G(x(t�1)

;�)�G(w̄;�)).

Let us denote ✏
t

:= G(x(t)

;�) � G(x̄;�). Applying this
inequality recursively we obtain ✏

t

 ✏
0

(1� ⇣)
t. Using the

inequality 1 � x  exp(�x) and rearranging we get that
✏
t

 ✏
0

exp(�⇣t). When t �

1

⇣

ln

✏0
✏

, it can be guaranteed
that ✏

t

 ✏. The desired result follows directly from

F (w(t)

;�)� F (w̄;�)  G(w(t), ✓(t);�)�G(w̄;�) = ✏
t

.
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