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ABSTRACT

We propose a novel framework to reconstruct the left ventri-
cle (LV)’s 3D surface from sparse tagged-MRI (tMRI). First
we acquire an initial surface mesh from a dense tMRI. Then
landmarks are calculated both on contours of a specific new
tMRI data and on corresponding slices of the initial mesh.
Next, we employ several filters including global deformation,
local deformation and remeshing to deform the initial surface
mesh to the image data. This step integrates Polar Decom-
position, Laplacian Surface Optimization (LSO) and Defor-
mation (LSD) algorithms. The resulting mesh represents the
reconstructed surface of the image data. Further more, this
high quality surface mesh can be adopted by most deformable
models. Using tagging line information, these models can
reconstruct LV motion. The experimental results show that
compared to Thin Plate Spline (TPS) our algorithm is rela-
tively fast, the shape represents image data better and the tri-
angle quality is more suitable for deformable model.

Index Terms— Reconstruction, deformable model, lapla-
cian surface, optimization, triangle quality, remeshing

1. INTRODUCTION

tMRI is a non-invasive way to track the in vivo myocardial
motion during cardiac cycles. Reconstructing the 3D LV mo-
tion from tMRI can assist doctors to diagnose cardiac diseases
earlier, and can also be used for 3D strain analysis of the my-
ocardium. A typical approach of reconstruction is to calcu-
late the motion of material markers from tags. Employing
these material markers as control points, deformable models
can reconstruct myocardial motion. Mesh based models ap-
proaches such as Finite Element Methods (FEM) and quadric
models have been widely used for LV motion reconstruction.
An accurate and high quality mesh is crucial to initialize these
models. If the tMRI data is dense enough, the resulting mesh
can be acquired by segmentation and triangulation. However,
in many cases dense data is unavailable. An alternative ap-
proach is to obtain a high quality mesh from a generic dense
tMRI, and then deform this mesh to any sparse data for sur-
face reconstruction.

In our previous research [1], a plausible mesh is built by
manual segmentation with validation by an expert, and Delau-
nay triangulation using geodesic distances. Next landmarks
are calculated from this mesh and any sparse LV tMRI. Fi-
nally TPS [2] are employed to deform this mesh to LV tMRI.
Due to TPS, the whole procedure is slow and the resulting
mesh is not good enough measured by radius ratio.

This paper presents an effective deformation method,
which can replace TPS. The algorithm consists of global de-
formation, local deformation and remeshing. LSO [3] and
LSD [4] are employed for remeshing and local deformation
respectively. The output is the reconstructed surface mesh
and it can be employed as the initial mesh for deformable
models. For modeling purpose, this mesh should be accurate
and the triangle quality should be good [3]. Our output mesh
is tested with different deformable models, such as FEM [1]
[5], Laplacian Volume Editing [6], volume registration based
tracking [7] and mass-spring based method [8]. The results
show that it is suitable.

Our paper is organized as follows: section 2 introduces
the detail of the algorithm. Section 3 applies our algorithm
on sparse LV tMRI and compares it to TPS in running time,
deformed shape and triangle quality. In section 4 we draw the
conclusions.

2. METHODS

2.1. Framework

Figure 1 shows the framework of our algorithm. The input
is the surface mesh of a generic model, model landmarks and
image landmarks. In our specific case, the generic model is
segmented from dense tMRI obtained from a healthy volun-
teer and the surface mesh was build by a Delaunay triangula-
tion using geodesic distances. The landmarks are calculated
both on the image contours and on the corresponding slices
of the model. The output is the reconstructed surface mesh.

In between there are several transformation filters. Global
deformations are used to roughly place the model on the im-
age data location based on affine transformation including
translation, rotation and isotropic scaling. LSO is employed
twice. The first pass smooths the initial surface mesh. The



Fig. 1. Algorithm framework. Inputs are surface mesh of a
generic model, model landmarks and image landmarks. Out-
put is the deformed surface mesh of an image data. In be-
tween there are several filters such as global deformation,
LSO and LSD.

second pass improves the triangle quality of output. Here tri-
angle quality is measured by radius ratio (Section 3). LSD
is employed to locally deform the model mesh to image data
according to model and image landmarks. Section 2.3 and 2.4
give details on these filters.

2.2. Landmarks and Global Deformation

Our previous research [1] describes the detail of obtaining
landmarks and material markers, as well as the data infor-
mation. First LV boundaries and tagging line information
are obtained from tMRI using Gabor Filters [9] and Meta-
morphs [10]. Secondly, landmarks are evenly selected from
the boundary lines in short axis (SA). Since there are less then
5 slices in SA for sparse data, the landmarks are relatively
sparse. Finally, the intersections of the three tagging planes
are calculated, as well as the intersections of the LV boundary
and the tagging planes. These intersections can be used as the
material markers in LV motion tracking.

After obtaining corresponding landmarks from the surface
mesh and tMRI, global deformation is applied by approxi-
mately finding the translation, scaling and rotation matrix.
The global translation is defined as a vector pointing from
the center of source points to the center of target points. The
global scaling after translation is defined as the ratio between
the radius of the source points and the radius of the target
points. The global rotation after translation and scaling is ob-
tained by Polar decomposition. After applying global trans-
lation, scaling and rotation, non-rigid local deformation is re-
quired to ensure the accuracy. LSO and LSD are employed
here.

2.3. Laplacian Surface Optimization

Laplacian surface is also called differential coordinates. It
represents each point as the difference between such point and
its neighborhoods. LSO is an algorithm to improve triangle
quality of a surface mesh. The inputs are anchor points and
an initial surface mesh. The output is an optimized surface
mesh.

Here we introduce notations and this algorithm. Let
the mesh M be described by a pair (V, E), where V =
{v1, ..., vn} describes the geometric positions of the ver-
tices in R3 and E describes the connectivity. The neigh-
borhood ring of a vertex i is the set of adjacent vertices
Ni = {j|(i, j) ∈ E} and the degree di of this vertex is
the number of elements in Ni. Instead of using absolute
coordinates V, the mesh geometry is described as a set of
differentials ∆ = {δi}. Specifically, coordinate i will be
represented by the difference between vi and the average of
its neighbors:

δi = vi −
1
di

∑
j∈Ni

vj (1)

Assume V is the matrix representation of V. The trans-
formation between vertex coordinates V and Laplacian co-
ordinates ∆ can be described in matrix algebra. Let N
be the mesh adjacency (neighborhood) matrix and D =
diag(d1, ..., dn) be the degree matrix. Then ∆ = LV , where
L = I −D−1N for the uniform weights.

Using a small subset A ⊂ V of m anchor points, a
mesh can be reconstructed from connectivity information
alone [4]. x, y and z positions of the reconstructed object
(V ′

p = [v′1p, ..., v
′
np]

T , p ∈ {x, y, z}) can be solved separately
by minimizing the quadratic energy

‖LV ′
p‖2 +

∑
a∈A

‖v′ap − vap‖2 (2)

where the vap are anchor (landmark) points. ‖LV ′
p‖2 tries

to smooth the object by minimizing the difference, and∑
a∈A ‖v′ap − vap‖2 keeps anchor points unchanged. In

practice, with m anchors, the (n + m) × n overdetermined
linear system AV ′

p = b[
L
Iap

]
V ′

p =
[

0
Vap

]
(3)

is solved in the least squares sense using the method of normal
equations V ′

p = (AT A)−1AT b. The first n rows of AV ′
p =

b are the Laplacian constraints, corresponding to ‖LV ′
p‖2,

while the last m rows are the positional constraints, corre-
sponding to

∑
a∈A ‖v′ap − vap‖2. Iap is the index matrix of

Vap, which maps each V ′
ap to Vap. The reconstructed shape is

generally smooth, with the possible exception of small areas
around anchor vertices. The minimization procedure moves
each vertex to the centroid of its 1-ring, since the uniform
Laplacian L is used, resulting in good inner fairness.



The main computation cost of this algorithm is big matrix
multiplication and inverse. Since A is sparse matrix, AT A
is sparse symmetric definite matrix. The Conjugate Gradient
algorithm can be employed to solve the system.

In our algorithm, LSO is employed twice (Figure 1).
At the first time the anchor points are selected evenly and
sparsely from the whole object, therefore the shape of surface
mesh of generic model can be roughly conserved as well as
smoothed. At the second time image landmarks are used as
anchor points, therefore truth points can be fixed and triangle
qualities can be improved. The output data are generated after
the second pass.

2.4. Laplacian Surface Deformation

LSD is also called Laplacian Surface Editing, which is an al-
gorithm for local deformation. The inputs are deformed con-
trol points and an initial mesh. In our specific case, control
points are model and image landmarks. Model landmarks are
moved to image landmarks directly. The deformation of rest
points can be calculated by LSD. Note that after global de-
formation process, the displacements of control points are re-
stricted in a local range. The output is the deformed mesh.

Using the same notation as Section 2.3, this time we need
to minimize this quadratic energy function:

E(V ′) =
n∑

i=1

‖δi − δ′i‖2 +
∑
i∈C

‖vi − v′i‖2 (4)

where δ′ and v′ is Laplacian and Cartesian coordinates after
deformation. C is the set of control points. The first half try
to keep the shape according to previous time step, which is δ.
The second half can move control points v to deformed posi-
tions v′. However, using formula 4, no point will be moved
except the control points C. The main idea of LSD is to com-
pute an appropriate transformation Ti for each vertex i which
can be plugged into energy formula 4:

E(V ′) =
n∑

i=1

‖Tiδi − δ′i‖2 +
∑
i∈C

‖vi − v′i‖2 (5)

Ti should be constrained to avoid a membrane solution,
which will lose all geometric detail. Thus, Ti should include
rotations, isotropic scales, and translations. In particular,
anisotropic scales should not be allowed, as they allow re-
moving the normal component from Laplacian coordinates.
The class of matrices representing isotropic scales and ro-
tation can be written in a specific format. Employing such
format, formula 5 can be simplified. The detailed formula can
be found in [6]. Formula 5 can be minimized iteratively by
finding Ti and applying it on each vertex coordinates. When
v converges, this minimization problem is solved. The trans-
formation Ti is an approximation of the isotropic scaling and
rotations when the rotation angle is small. In our framework,

the major rotation is handled in the global deformation part.
The local rotation fits the small angle assumption.

After reconstructing the surface of the LV and initializing
the deformation models, [1] [6] [7] [8]can be employed to
reconstruct the LV motion.

3. EXPERIMENTS

LSE, LSO and a sparse matrix solver are implemented and
tested on a 2.40 GHz Intel Core2 Quad computer with both
GNU/Linux and Windows environments. These algorithms
are coded by extending vtkAlgorithm in Visualization ToolKit
(VTK) and named as vtkModeling [11]. Codes and doc-
uments can be downloaded in the vtkExtend category of
Sourceforge. For comparison, TPS is also tested.

The initial surface mesh of a generic LV model has 2833
vertices and 5662 polygons. The image data is MR data with
seven SA slices and two LA slices. 270 landmarks are gener-
ated from SA image data and surface mesh. The whole 4-filter
framework takes about 15 seconds with our matrix solver and
less than 1 second with professional solver TAUCS. Note that
the first pass of LSO can be performed offline, by which the
speed can be improved. TPS takes 3.5 seconds with the same
data sets and professional solver.

Figure 2 shows the effect of each step of our framework.
Figure 3 compares results of our algorithm (red object) and
TPS (green object). Applying TPS directly on the initial mesh
results in bad shape due to its irregular shape and degener-
ated triangles. For fairness, we apply TPS on the first pass
of the LSO. The TPS result is shrunk in regions far away
from control points like the bottom, since TPS tries to smooth
the whole shape and removes high frequency. Due to non-
uniform scaling and shearing, TPS cannot guarantee a rigid
deformation on the top.

Triangle shapes are also measured and compared. We
measure our success with the radius ratio mapped to [0, 1] as

ti = 2
r

R
(6)

where R and r are the radii of the circumscribed and inscribed
circles respectively. This way, ti = 1 indicates a well shaped
triangle, ti ∈ [0, a] means degenerate triangle. Figure 4 com-
pares Ti value of our algorithm and TPS. tmean of our mesh
is 0.8932. tmean of TPS mesh is 0.8628. Note that TPS is
applied on the first output of LSO, whose triangle quality is
already improved.

4. CONCLUSION

We presented a novel framework to reconstruct a surface
mesh from sparse tMRI. The resulting high-quality mesh can
be employed as the input of deformable models to recon-
struct the LV motion. We also introduced LSO and LSD to
the medical imaging community. The algorithm is efficient,

http://sourceforge.net/projects/vtkextend/


Fig. 2. The effects of our algorithm framework showed with
polygon mesh and wire-frame. From left to right, they are
initial surface mesh of a generic LV model, the first LSO filter,
LSD filter and the second LSO filter.

Fig. 3. Results from our algorithm (red) and TPS (green)
are displayed with tMRI data. TPS result is over-deformed
around control points but under-deformed in other regions.

Fig. 4. Triangle quality measured by Ti histogram. The left
one is obtained from our algorithm. The right one is obtained
from TPS.

the resulting mesh represents the image data well, and the
triangle quality is suitable for input of deformable models.
Experiments are designed to compare our algorithm to TPS.
LSO and LSD are implemented as VTK classes, which can
be easily used in many projects. In the future we will focus
on volume data reconstruction.
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