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ABSTRACT

Object boundary extraction is an important task in brain im-
age analysis. Acquiring detailed 3D representations of the
brain structures could improve the detection rate of diseases
at earlier stages. Deformable model based segmentation
methods have been widely used with considerable success.
Recently, 3D Active Volume Model (AVM) was proposed,
which incorporates both gradient and region information
for robustness. However, the segmentation performance of
this model depends on the position, size and shape of the
initialization, especially for data with complex texture. Fur-
thermore, there is no shape prior information integrated. In
this paper, we present an approach combining AVM and
Active Shape Model (ASM). Our method uses shape infor-
mation from training data to constrain the deformation of
AVM. Experiments have been made on the segmentation of
complex structures of the rodent brain from MR images, and
the proposed method performed better than the original AVM.

Index Terms— Segmentation, deformable models, Ac-
tive Volume Model, Active Shape Model, Shape prior, rodent
brain

1. INTRODUCTION

Diagnosis of neurological and phychiatric disorders is mostly
based on behavioral observations and on data from neu-
roanatomical measures (MR, CT). Retrospective studies have
shown that neurological disorders are associated with specific
morphological changes of the brain, which could be used
for the early or differential diagnosis of the disease [9]. In
this study, we propose an approach that will provide fast and
accurate 3D segmentation of brain regions based on MR im-
ages of the rodent brain. Rodents are often used as models
of human disease not only because they frequently exhibit
key features of abnormal neurological conditions [5] but also
because they are a convenient starting point for novel studies.

Related works: Deformable model based segmentation
methods have been widely used with considerable success.
We review some relevant work using contour or mesh based

shapes. Kass et al. proposed Snakes [7], which are energy-
minimizing splines with smoothness constraints and influ-
enced by image forces. Gradient Vector Flow (GVF) [12] is
then proposed to increase the attraction range of the original
Snakes. Depending solely on the image gradient information,
however, these methods may be trapped by noise and spurious
edges. Region analysis strategies [15] have been incorporated
in Snake-like models to improve their robustness to noise.
Huang et al. present a strategy aimed at integrating shape
and appearance in a unified space, which is named as Meta-
morphs [6]. The model has not only boundary shape but also
interior appearance, making it more robust in segmentation.
Efforts have been made on the integration of interior appear-
ance into 3D models. A volumetric deformable model, Active
Volume Model (AVM) [11], is proposed. The AVM model’s
shape is represented by a simplex mesh and its volumetric
interior carries the various visual appearance feature statis-
tics. However, this online learning based model does not have
any shape prior information. Thus it is relatively sensitive to
the quality of initialization and image information. Another
group of deformable models is level set based methods [8].
Region information has also been incorporated [4]. These ap-
proaches have been widely used in tubular structure and 3D
cortex segmentation tasks since they are topologically free
and can be easily used in any dimension. Statistical modeling
approaches such as Active Shape Model (ASM) [3] or Active
Appearance Model (AAM) [2] are also widely used and have
been successfully applied in cardiac [14] and brain [1] seg-
mentation. These methods may need a large amount of 3D
training data, whose creation and maintenance can be difficult
and time consuming in practice.

In this paper, we present an approach to combine the ad-
vantages of both AVM and ASM, i.e., use online learning
based AVM to deform the 3D mesh from image information,
and then use ASM shape constraint to refine this intermedi-
ate result, and repeat these two steps until convergence. AVM
does not rely on any offline learning, so we do not need a
large set of 3D training data. As a tradeoff, AVM is some-
times sensitive to image noise and intensity inhomogeneity.



Thus shape constraint from ASM is then applied to refine the
intermediate segmentation result. We train the ASM model
in our approach using a small number of training data since
we only need a rough statistical model to help AVM out of
local minima, and the overall approach is mostly data driven.
By combining these two approaches, the proposed method is
particularly useful when there are a limited number of train-
ing samples and large variations among the samples. It is
applied to segment complex structures in rodent brains, such
as the cerebellum and the striatum. Numerous experiments
have been designed to evaluate this method.

2. METHODOLOGY

Image alignment: First all brain scans (images) are aligned
to the same reference brain whose orientation corresponds to
the Paxinos stereotaxic position [10]. Alignment is performed
with rigid transformations (rotations and translations), thus
after alignment the volume and shape of brain structures do
not change. Then the brain structures are manually segmented
by clinical experts. A 3D surface mesh, composed of around
1,000 vertices, is created for each reconstructed structures
in brains. The results from traditional marching cubes may
contain many artifacts, thus all meshes are post-processed
using isotropic remeshing and detail preserving smoothing
tools'. To obtain the one-to-one correspondence for each ver-
tex, we choose one specific mesh as the reference mesh and
use a local deformation technique [13] to warp it into all other
meshes. Thus all resulting meshes share the same connectiv-
ity and topology, and a mean shape can be calculated. From
observation, the variance of the mass centroid of these meshes
is small (the standard deviation is less than 0.3mm). Thus
given an aligned test image, it is reasonable to predict the cen-
troid using the mean value.

Deformation module: The smoothed mean shape is
used as an initialization. However, it may not be close to the
boundary of the testing data because of the variance. Thus de-
formable models are still needed for accurate segmentation.
In order to fit to the boundary of an object, the traditional
AVM is driven by both a gradient based data term and a re-
gion data term which are derived from image information.
The overall external energy function consists of two terms:
the gradient term F, and the region term Er. The overall
energy function is:

E= Eint + ke . Eext - Eint + ke : (Eg + kR : ER) (l)

where kg is a constant to balance the contributions of the two
external energy terms. k. is for the balance between internal
(smoothness) and external forces.

The gradient data term can be defined using the gradient
map, edge distance map, or a combination of both. Denote a
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gradient magnitude map or the distance transform of an edge
map as Iy, the gradient data term is defined as:

Ey = /AF!J(X)dA> Fy = ngge or Fy = — |VI\2 )

where A denotes the surface mesh, Dcqge refers to the un-
signed distance transform of the edge map, and VI represents
the image gradient.

The region term encodes constraints for the AVMs model-
interior appearance statistics. Considering a module using
intensity statistics, the object region is predicted according
to the current model-interior intensity distribution. Having
both foreground object and background probabilities, we ob-
tain a binary map that represents the predicted object region
by applying the Bayesian Decision rule. Connected compo-
nent analysis is then applied on the binary map to retrieve the
connected component that overlaps the current model. This
connected region is considered as the current ROI. Let us de-
note the signed distance transform of the current model’s sur-
face shape as ®,, and the signed distance transform of the
ROI boundary shape as @, the region-based external energy
term is defined using voxels within a narrow band around the
model surface as:

Ep = /A DA (V)®r(v)dA 3)

The multiplicative term provides two-way balloon forces
that deform the model toward the predicted ROI boundary.
This allows flexible model initializations either overlapping
the object or inside the object. The mesh deformation is
based on standard Finite Element Method (FEM) and solved
efficiently in a linear system.

Shape refinement module: The above formulation may
not be able to avoid the local minimum or keep a specific
shape, especially when the texture of image is complex. Thus
a shape refinement procedure is added in our method to con-
strain the deformation. This procedure is similar to the shape
updating step in ASM. First all meshes are aligned using sim-
ilarity transformation. Note that the alignment here is for
shapes instead of images. Then their statistics is captured
by principal component analysis (PCA). Given a intermediate
segmentation result, it is first transformed to the mean shape,
and then mapped into PCA space to update the pose and shape
parameters. Thus we can guarantee that the shape only de-
forms into shapes consistent with the training data. This step
can prevent over-segmentation and provide a shape constraint.
We adopt the following steps to deform the proposed model
toward matching the desired object boundary.

1. Manually segment a small number of training data.

2. Use PCA to capture statistics (mean and variance) of
these 3D shapes.

3. Initialize the AVM, i.e., stiffness matrix and step size
for FEM, and the gradient magnitude or edge map.



Fig. 1. Segmentation results of the striatum (the Ist to the 3rd column) and the cerebellum (the 4th to the 6th column) of the
rodent brain. The 1st row: results from the proposed method. The 2nd row: results from AVM.

4. Compute ®, based on the current model; predict object
ROI R by applying the Bayesian Decision rule to bina-
rizing the estimated object probability map, and com-
pute ® . Calculate the external force vector.

5. Deform the model using FEM and external forces.

6. Refine this intermediate result by ASM shape con-
straint (transform it to the mean shape, then update the
pose and shape parameters consistent with the training
data).

7. Repeat steps 4-6 until convergence.

Alternatively employing the AVM deformation and the
ASM shape refinement is more robust to noises and can
handle more complex textures than purely using AVM. Our
model converges fast and robust towards the boundary be-
cause of the benefit of the good-quality initialization and the
constraint of the shape prior. One more benefit of our model
is that the size of the training data can be small, because AVM
is driven by current image information. Training information
is only used for the shape refinement procedure, which is an
auxiliary step in our model.

3. EXPERIMENTS

Experimental Settings: Adult male Sprague-Dawley rats
were transcardially perfused with 4% paraformaldehyde.
Heads were stored in paraformaldehyde and scanned for
magnetic resonance imaging. The brains remained in the
heads during scanning in order to avoid tissue and shape dis-
tortions during brain extraction. The heads were scanned on a
21.1T Bruker Biospin Avance scanner (Bruker Biospin Cor-
poration, Massachusetts, USA). The protocol consisted of a
3D T2-weighted scan with echo-time (TE) 7.5ms, repetition
time (TR) 150ms, 27.7 kHz bandwidth, field of view (FOV)
of 3.4 x 3.2 x 3.0mm, and voxel size 0.08mm, isotropic.
Out of 10 3D data, 7 were used as training to get mean mass
centroid and other statistics, and the remaining 3 were used

for testing. Both AVM and the proposed method were imple-
mented in C++ and Python2.6 and tested on a 2.40 GHz Intel
Core2 Quad computer with 8G RAM.

Table 1 compares the segmentation performance between
our framework (including more sophisticated initialization
and shape refinement) and the original AVM system. Cere-
bellum, left and right striatum of rodent brains are seg-
mented. They are challenging for deformable models because
of the relatively complex shapes and inside textures. The
mean value of sensitivity (p), specificity (q), dice similarity
coefficient (DSC') and relative errors of volume magnitude
compared to ground truth are reported for evaluation. The
number of iterations is also listed since the running time is
proportional to it. Figure 1 shows the segmentation results of
the methods with different view points in 3D. In the original
AVM system, we manually place an ellipsoid and carefully
rotate and resize it to an ideal position (close to the boundary)
as the initialization, following the same procedure as the orig-
inal paper [11]. Parameter tuning is in general a challenging
problem for deformable models. We chose the parameter
values in both models empirically. In the proposed method,
shape constraints contribute to the stableness. Thus the result
is less sensitive to parameter values.

Our proposed method achieves better quantitative perfor-
mance and also better visual results. Its sensitivity, specificity
and DSC are generally higher, while the number of iteration
times for convergence are less. Note that all specificities are
very high. The reason is that the segmented structures are rel-
atively small, thus most background areas (true negatives) are
successfully recognized.

Segmenting the left and the right striatum is challeng-
ing because the contrast between the structure and other sur-
rounding brain structures is relative low. AVM can easily de-
form too much and over-segment the structure. Furthermore,
with large smoothness energy (small k.), AVM may fail to
reach the sharp boundary of the striatum, while with large ex-
ternal energy (large k.), AVM results may contain many small



Table 1. Quantitative evaluations and performance comparisons between AVM and the proposed method. RE-V denotes the

relative error of estimated volume magnitude.

AVM Our method
P q |DSC | #iterations |[RE-V || p q |DSC | #iterations | RE-V
Left striatum |0.75|0.98 | 0.62 28 1.138(/0.82|0.99| 0.89 7 0.084
Right striatum | 0.70 | 0.99 | 0.61 32 1.025 || 0.81{0.99| 0.84 8 0.129
Cerebellum 0.7110.990.78 43 0.266 |/ 0.8410.99 | 0.87 13 0.039

bumps because of the local intensity inhomogeneity and lack
of smoothness constraints. The results can be observed in
the second row of Figure 1. Using our method alleviates this
problem since the ASM shape refinement step keeps the shape
and prevents the over segmentation problem (the first row of
Figure 1).

The cerebellum is also difficult to segment because of its
complex internal textures and two protruding features. Its in-
terleaving high gradient may make the model trapped in the
local minimum. Large external force is needed to segment the
protruding features, which adversely affects the smoothness
of the model. Thus traditional AVM underperforms this task.
Even though the quantitative results of AVM are reasonably
good, we can clearly observe the artifacts from visual results.
Our method uses ASM shape constraint to refine the interme-
diate result. The shape already escapes many local minima
and it has two protruding features presented as priors. These
properties not only improve the model’s performance but also
decrease the number of iterations to converge.

4. CONCLUSIONS AND FUTURE WORKS

In this work we proposed an algorithm to segment structures
of the rodent brain. Based on a small set of training data, our
method automatically places the initialization using the mean
mass centroid and the smoothed mean shape, and also uses the
shape information as a prior to constrain the deformation. It is
more accurate and robust, and needs less iterations than AVM.
Our method is more applicable when there is only a small
number of training sampless. In the future, we would like
to analyze and obtain statistics for more structures from more
data. Furthermore, our current model can not handle structure
missing. Efforts will be put on the modeling of these atypical
situations. We are also interested in using the relative position
and orientation among structures to facilitate the deformation.

5. REFERENCES

[1] K. Babalola, T. Cootes, C. Twining, V. Petrovic, and
C. Taylor. 3D brain segmentation using active appear-
ance models and local regressors. In MICCAI, pages
401-408, 2008.

[2] T. Cootes, G. Edwards, and C. Taylar. Active appear-
ance models. Proc. Of European Conf. on Computer
Vision, 2:484-498, 1998.

[3] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Ac-
tive shape model - their training and application. CVIU,
61:38-59, 1995.

D. Cremers, M. Rousson, and R. Deriche. A re-
view of statistical approaches to level set segmentation:
Integrating color, texture, motion and shape. IJCV,
72(2):195-215, 2007.

F. Delis, M. Xenos, D. Grandy, G.-J. Wang, and N. V. P.
Thanos. Effects of chronic alcohol intake and dopamine
D2 receptor gene expression on brain anatomy: an in-
vivo MRI morphometric study of the mouse brain. In

Annual meeting of the Research Society on Alcoholism,
2009.

X. Huang, D. Metaxas, and T. Chen. Metamorphs: De-
formable shape and texture models. In CVPR, pages
496-503, 2004.

[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. IJCV, 1:321-331, 1987.

[8] R. Malladi, J. Sethian, and B. Vemuri. Shape modeling
with front propagation: A level set approach. PAMI,
17:158-175, 1995.

R. McCarley, C. Wiblea, M. Frumina, Y. Hirayasua,
J. Levitta, I. Fischera, and M. Shenton. MRI anatomy
of schizophrenia. Biological Psychiatry, 45(6):1099—
1119, 2009.

G. Paxinos and C. Watson. The rat brain in stereotaxic
coordinates. Elsevier, Amsterdam, 2007.

T. Shen, H. Li, Z. Qian, and X. Huang. Active vol-
ume models for 3D medical image segmentation. CVPR,
2009.

C. Xu and J. Prince. Snakes, shapes and gradient vector
flow. TIP, 7:359-369, 1998.

S. Zhang, X. Wang, D. Metaxas, T. Chen, and L. Axel.
LV surface reconstruction from sparse tMRI using lapla-
cian surface deformation and optimization. In ISBI,
2009.

Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and
D. Comaniciu. Four-chamber heart modeling and au-
tomatic segmentation for 3D cardiac ct volumes using
marginal space learning and steerable features. IEEE
Trans. Med. Imaging, 27:1668—-1681, 2008.

S. Zhu and A. Yuille. Region Competition: Unifying

snakes, region growing, and Bayes/MDL for multi-band
image segmentation. PAMI, 18(9):884-900, 1996.

(4]

(5]

[6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]



