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ABSTRACT

This paper presents a framework to reconstruct mouse

left ventricular motion based on tagged MRI using nonlinear

Laplacian deformable models, which perform better in terms

of accuracy and efficiency. Based on the deformation results,

we analyze the LV 3D motion and strain of the myocardial

wall to depict the contractile function of the heart. In our

framework, the 2D tagging lines are extracted using active

contour models. The 3D control points are then generated

from the intersections of the tagging lines, and a 3D mesh-

less model is built based on the sparse 2D contours. Finally,

the initial model is driven to deform by the control points us-

ing 3D meshless deformable model with nonlinear Laplacian

kernel. This method is validated using the in vivo MRI tag-

ging data from the mouse heart. The results show that the

proposed method effectively quantifies the myocardial strain

distribution of the LV model in 3D, which has the potential to

increase accuracy in detecting various kinds of heart diseases.

Index Terms— Tagged MRI, strain analysis, mouse car-

diac, deformable model

1. INTRODUCTION

Over the past two decades, experiments utilizing transgenic

and knockout mice have significantly advanced the research

on cardiovascular diseases, and these models have become an

indispensable tool to study the cardiovascular diseases in hu-

mans [6, 16]. The majority of such studies have employed ex

vivo methods (e.g. immunostaining) for assessing the results

of gene manipulation, and, for the heart function, catheter-

based measurements of left-ventricular (LV) pressure in iso-

lated Langendorff-perfused hearts are obtained. For the study

of ventricular function in particular, noninvasive imaging of-

fers a powerful non-invasively tool for making measurements

that directly reflect its complex in vivo physiology.

Tagged magnetic resonance imaging (MRI) has been

widely used to analyze the cardiac wall motion [1]. It is

used to diagnose human heart diseases as well as experimen-

tal heart disease models in mice. Since the development of

tagged MRI, many methods have been developed to analyze

the human heart [10], but not all of them can be applied

directly to the mouse cardiac data due to its low quality.
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Fig. 1: (a) The setting of MR images with fitted LV mod-

el rendered in green: five SA images parallel placed with e-

qual displacements, and four LA images taken with 45◦ in

between. (b) Tagged SA image. The image resolution is low,

and the tagging lines are blurred due to fast heart beating.

Compared with the human heart, the data acquisition process

for the mouse heart is more challenging to achieve adequate

spatial and temporal resolution. The mouse heart is about

1000th the size of a human heart and beats at 400-600 beats

per minute (bpm), which is much faster than a human heart

(60-80 bpm). Currently available MRI instruments for mouse

imaging operate at a higher magnetic field strength (4.7T or

above) than clinical MRI scanners but is still unable to pro-

vide temporal and spatial resolution in proportion with the

mouse heart rate and size. Consequently, a compromise is

obtained between tagging spatial and temporal resolution. As

shown in Fig.1a, there are only five short-axis (SA) and four

long-axis (LA) MR images. The SA images are too sparse,

so that there is no continuity between adjacent ones. The

registration-based methods [2] require more slices of SA im-

ages in order to register each pixel to the following frame with

proper displacement on LA direction. The large gaps between

SA images make the 3D registration infeasible. In addition,

as shown in Fig.1b, the tagging lines on each MR images

show high intensity with very small spaces in between. This

increases error rate during 2D tagging tracking process due

to mis-tracking adjacent ones, especially in vague images.

In this paper, we propose nonlinear deformable models to

reconstruct 3D motions, which experimentally prove high

accuracy in processing sparse 2D MRI data.

The 2D characterization of the murine cardiac mechanical

function in normal, infarcted, or genetically engineered mice



or rat model subjected to stem cell intervention have been re-

ported in [4, 7, 16]. Recently studies drew more attention

on the analysis of complete 3D LV strain. Zhong et al. [15]

presented the 3D myocardial deformation based on the move-

ment of SA tagging intersection points. The motion of these

points are easy to be acquired, but the estimation may con-

tain bias since they cluster at only a few SA slices. Chuang

et al. [3] reconstructed the LV motion by linear interpolating

the displacement of the intersection points in short and long

axis separately. The result is only a linear approximation of

the complex myocardial motion. It is hard to maintain ac-

curacy when the MR images are sparse. Though Young et

al. [13] proposed more sophisticated methods to smooth the

interpolation, the displacements of the material points were

still intrinsically linearly interpolated, and the results did not

show remarkable improvement under sparse MR images.

In this paper, we propose a new nonlinear meshless de-

formation framework, namely meshless model as the repre-
sentation and nonlinear Laplacian method as the deforma-
tion kernel, for 3D LV motion analysis problem. Meshless

deformable models have been demonstrated to be robust by

being widely investigated in mechanical simulation [11]. Ex-

perimental results prove their efficiency in saving construc-

tion and maintenance cost, compared to mesh-based model-

s. Among the various kernels for deformation in meshless

models, Laplacian kernels are very efficient in computation

speed [11]. However, as a linear approximation of physics-

based models, they cannot fully depict the motion of points

on the cardiac model when nonlinear deformation, like rota-

tion and twisting, happens. Kernels derived from continuum

mechanics [12] have relatively high degrees of freedom, but

they are sensitive to parameters and have high computational

complexity. In our paper, the proposed nonlinear Laplacian

kernel inherits the computational advantage of the Laplacian

method, while reconstructing the complex LV motion with

high accuracy due to its nonlinear nature. We validate this

algorithm based on simulation of the mouse LV deformation.

2. METHODOLOGY

System Framework: A complete system is built to recon-

struct the deformable model from the sparse images. It con-

sists of four major components: 1) tagging line tracking, 2)

control point tracking, 3) meshless model construction, 4)

meshless deformation. Active contour models are implement-

ed to robustly track the tags for low quality tagged MR im-

ages, and the 2D LV contours are automatically delineated

under deformable models. Then the initial 3D meshless mod-

el of the ED LV is built using the modified coherent point

drift [8] based on the sparse contour. Traditional tracking

methods can handle sparse landmarks effectively in cine MR

images [17]. In our application, the intersections of the tags

provide more dense control points with detail movements.

Using our proposed nonlinear deformable model, the initial

Algorithm 1 Nonlinear Laplacian deformation

Input: the positions of the initial points p, and the control

points c
Output: the positions p′ after deformation

precalculate the weight ωij , and the initial guess p′
0

repeat
for each i, calculate local rotation Ri from Si in (3)

solve linear system (4) to get the new position p′

for all k ∈ F , set p′
k as ck

until p′ converges.

model is driven by the control points to demonstrate the LV

movement along a cardiac cycle. The motion strains are cal-

culated locally based on the movement of the point cloud.

Meshless Models with Nonlinear Laplacian Kernel:
Different from the traditional simulation methods, the mesh-

less model abandons the grid or mesh structures, using only

the particles to represent the model [11]. It is widely used

in problems with large deformations and nonlinear materi-

al behavior. Meanwhile, the complex and sensitive mesh

generation process is eliminated. The material point is con-

sidered as the center of the phyxel which is a sphere with

radial decreasing mass distribution. Given a dense phyxel

representation, any point on the model is expressed as the

weighted average of all the phyxels whose ranges cover this

position. The mechanical properties, like mass and density,

are all defined in this manner.

Many deformable models have been proposed under the

meshless framework. Usually, some kinds of internal forces

are used to express the interactions among the phyxels based

on the special material properties. The myocardial wall is

considered as nearly incompressible, which is experimentally

proved that the volume change is no more than 4% [10]. So

we propose a constraint that all the material points keep the

distances to the nearby points. Similar constraint has been

used for surface mesh deformation in [9] to preserve the sur-

face detail, while we use it to maintain the shape on 3D vol-

ume model. In the neighborhood of any vertex i, the distance-

preserve deformation is approximated as rotation:

p′
i − p′

j = Ri(pi − pj) + ε, ∀j ∈ N (i). (1)

where pi and p′
i are the positions of the vertex i at the ini-

tial and the following frame, Ri is the rotation matrix at the

vertex i, and N (i) is the neighborhood of the vertex i. The

actual movement of the point set may not be presented as ro-

tation. However, a deformation under the proposed constraint

is achieved by minimizing the error ε. Given the control point

positions after deformation, the positions of all the points will

be calculated by minimizing the following energy function:

min
p′,R

n∑

i=1

∑

j∈N (i)

ωij ||(p′
i − p′

j)−Ri(pi − pj)||2 (2)

s.t. p′
k = ck, k ∈ F
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Fig. 2: Comparing the 3D strains from the linear [11] and

our nonlinear models with the 2D strains [16] in a cardiac cy-

cle, including radial (Err), circumferential (Ecc) and radial-

circumferential (Erc) strains.

where ωij is a fixed weight, which decreases as the distance

between the two points increasing in the initial frame. F is

the set of indices of the control points with position ck. The

energy term for each phyxel relates only to the Laplacian co-

ordinate change under rotation. The Laplacian coordinate was

also used in [11], where the scaling and rotation matrix was

used for transformation. However, only the linear componen-

t was estimated to approximate the rotation. This limits the

method for small deformation. The nonlinear model usually

achieves better accuracy with more complex computation. In

our work, the nonlinear system can be efficiently solved by

iteratively optimizing the position and the rotation matrices.

Given the position p′
i after the deformation, the optimal

rotation Ri can be solved separately for each vertex i. We

define the weighted covariance matrix between the initial and

deformed positions of vertex i based on its neighbor vertices

j as:

Si =
∑

j∈N (i)

ωij(pi − pj)(p
′
i − p′

j)
T (3)

Supposing the singular value decomposition of Si is UiΣiV
T
i ,

Ri can be derived as Ri = ViU
T
i .

Then with the updated optimal rotation matrix R, the min-

imum of (2) can be achieved by the following linear functions

for all the vertex i:
∑

j∈N (i)

ωij(p
′
i − p′

j) =
∑

j∈N (i)

ωij

2
(Ri +Rj)(pi − pj) (4)

All the linear functions can build a sparse linear system, with

the Laplace operator applied to p′. The control points will

always keep their given positions, while the positions of the

other points will be updated based on the solution of the linear

system. Based on the above method, p′ and R are solved

iteratively. With an initial guess of the positions p′
0, we solve

the non-linear problem iteratively by algorithm 1.

Strain Analysis: 3D strains are estimated by computing

the spatial gradients of the displacement field. The resulting

strains in Cartesian space are converted to LV-oriented coor-

dinates. This permits us to access the radial, longitudinal, and

circumferential strains of the LV.
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Fig. 3: Comparing the 3D strains from our nonlinear mod-

els with that from the linear ones [11] in a cardiac cycle,

including longitudinal (Ell), radial-longitudinal (Erl) and

circumferential-longitudinal (Ecl) strains. Note that 2D s-

trains cannot cover these directions.

3. EXPERIMENTS

Experimental settings: Nine mice were examined on a 4.7T

Varian INOVA system. Both of the SPAMM tagged images

and cine image were acquired within the whole cardiac cycle.

Two sets of tagged SA images were acquired with tagging

planes perpendicular to each other in each slice. Then, four s-

lices in LA views were chosen radially spaced every 45◦. The

tagging plane on the LA slices were parallel to the SA. This

made the three tagging planes all perpendicular to each oth-

er, which is the minimum requirement for the reconstruction

of the 3D motion for the heart. The non-tagged images were

also acquired for both the LA and SA slices mentioned above

at the same time step as the tagged ones, which were used for

the segmentation of the heart boundary.

In [16], the 2D mouse LV strains were calculated based on

the movement of intersection points on the SA slices, which

is proved to be consistent with previous researches. Here,

taking their results as standard, we compare the global strains

calculated from our nonlinear deformation method with that

from the 3D deformation method based on linear Laplacian

kernel in [11].

Fig. 2 shows comparison results between our models and

models in [11] in terms of radial, circumferential normal s-

trains and radial-circumferential shear strains. The resulting

strains of our nonlinear models are similar to the 2D ones,

with average difference 5%, while the differences from the

linear models are around 40%. Our nonlinear Laplacian ker-

nel shows better accuracy than the linear one [11] in above

comparison. It further proves that the nonlinear deformable

models have better performance in heart motion simulation.

The strains related to the longitudinal direction cannot be

estimated based on 2D intersection point movement. The 3D

methods naturally present them. The strains outside the SA

slices are shown in Fig. 3. Similar to the other strains, the

nonlinear kernel gives larger strains. The magnitude of the

strains from the linear kernel is less than 50% of that from

nonlinear one. Similar to the SA results, the linear kernel



tends to underestimate the magnitude of the strains.

All the methods are implemented using C++ on an Intel

i7 2.80GHz computer with 8GB RAM. The computing time

for the nonlinear deformation on 15 frames (a cardiac cycle)

is around 40 seconds, which is comparable to the linear one.

The similar preprocesses which construct the Laplacian ma-

trices for both methods take up the majority of the time. In

addition, the iterative method to solve nonlinear Laplacian k-

ernel often converges in less than ten steps. Therefore, our

nonlinear deformable models improve the simulation accura-

cy without sacrificing the computational efficiency.

4. CONCLUSION

In this work, we present a comprehensive framework to ana-

lyze the mouse LV motion using the tagged MRI. The whole

process is optimized to track the movement of the mouse heart

robustly during the cardiac cycle. The 3D meshless LV model

is built and deformed based on the nonlinear Laplacian ker-

nel. The experiments show that it can simulate the LV motion

better than the linear one in terms of accuracy. Based on the

deformable model, strains are quantified at every local point,

which enables us to analyze properties of the ventricular wall

locally and globally. The framework may also be applied to

the human heart MR images to overcome the insufficiency of

the SA slices and the low image quality.

Our nonlinear deformable models are designed based on

the volume preserving property of the myocardium. In the

future, we will investigate the connection between our mod-

els and the physical-based ones. This will inspire us to de-

sign new deformable models with more sophisticated physi-

cal properties while maintaining the computational efficien-

cy. Furthermore, the 2D tagging line tracking results on the

tagged MR images may contain sparse outliers. They often

seriously affect the whole model. Therefore, we expect to

utilize compressed sensing technique [14, 5] to reduce their

influence and increase the robustness of deformable models.

We thank Dr. Xin Yu for providing the mouse cardiac

MRI dataset and Dr. Wei Li for manually labeling the data.

5. REFERENCES

[1] E. Castillo, J. A. C. Lima, and D. A. Bluemke. Region-

al myocardial function: Advances in MR imaging and

analysis. Radiographics, 23:127–140, 2003.

[2] R. Chandrashekara, R. Mohiaddin, and D. Rueck-

ert. Analysis of 3-D myocardial motion in tagged

MR images using nonrigid image registration. TMI,
23(10):1245 –1250, Oct. 2004.

[3] J. S. Chuang, A. Zemljic-Harpf, R. S. Ross, L. R.

Frank, A. D. McCulloch, and J. H. Omens. Determi-

nation of three-dimensional ventricular strain distribu-

tions in gene-targeted mice using tagged MRI. MRM,

64(5):1281–1288, 2010.

[4] F. H. Epstein, Z. Yang, W. D. Gilson, S. S. Berr, C. M.

Kramer, and B. A. French. MR tagging early after

myocardial infarction in mice demonstrates contractile

dysfunction in adjacent and remote regions. MRM,

48(2):399–403, 2002.

[5] J. Huang, S. Zhang, and D. Metaxas. Efficient mr im-

age reconstruction for compressed mr imaging. Medical
Image Analysis, 15(5):670 – 679, 2011.

[6] R. L. Janiczek, B. R. Blackman, R. J. Roy, C. H. Meyer,

S. T. Acton, and F. H. Epstein. Three-dimensional phase

contrast angiography of the mouse aortic arch using spi-

ral MRI. MRM, 66(5):1382–1390, 2011.

[7] W. Liu, M. W. Ashford, J. Chen, M. P. Watkins, T. A.

Williams, S. A. Wickline, and X. Yu. MR tagging

demonstrates quantitative differences in regional ven-

tricular wall motion in mice, rats, and men. Am J Physiol
Heart Circ Physiol, 291(5):2515–2521, 2006.

[8] A. Myronenko and X. Song. Point set registration: Co-

herent point drift. TPAMI, 32(12):2262–2275, 2010.

[9] O. Sorkine and M. Alexa. As-rigid-as-possible surface

modeling. In SGP, pages 109–116, 2007.

[10] H. Wang and A. A. Amini. Cardiac motion and defor-

mation recovery from MRI: A review. TMI, 31(2), 2012.

[11] X. Wang, T. Chen, S. Zhang, D. Metaxas, and L. Axel.

LV motion and strain computation from tMRI based on

meshless deformable models. In MICCAI, volume 5241,

pages 636–644. 2008.

[12] K. Wong, L. Wang, H. Zhang, H. Liu, and P. Shi. Phys-

iological fusion of functional and structural images for

cardiac deformation recovery. TMI, 30(4), 2011.

[13] A. A. Young, B. A. French, Z. Yang, B. R. Cowan, W. D.

Gilson, S. S. Berr, C. M. Kramer, and F. H. Epstein.

Reperfused myocardial infarction in mice: 3D map-

ping of late gadolinium enhancement and strain. JCMR,

8(5):685–692, 2006.

[14] S. Zhang, Y. Zhan, M. Dewan, J. Huang, D. N. Metaxas,

and X. S. Zhou. Towards robust and effective shape

modeling: Sparse shape composition. Medical Image
Analysis, 16(1):265 – 277, 2012.

[15] J. Zhong, W. Liu, and X. Yu. Characterization of

three-dimensional myocardial deformation in the mouse

heart: An MR tagging study. JMRI, 27(6), 2008.

[16] R. Zhou, S. Pickup, J. D. Glickson, C. H. Scott, and

V. A. Ferrari. Assessment of global and regional my-

ocardial function in the mouse using cine and tagged

MRI. MRM, 49(4):760–764, 2003.

[17] Y. Zhou, E. Yeniaras, P. Tsiamyrtzis, N. Tsekos, and

I. Pavlidis. Collaborative tracking for MRI-guided

robotic intervention on the beating heart. In MICCAI,
volume 6363, pages 351–358. 2010.


