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ABSTRACT

Automatic analysis of histopathological images has been
widely investigated using computational image processing
and machine learning techniques. Computer-aided diagnosis
(CAD) systems and content-based image retrieval (CBIR)
systems have been successfully developed for diagnosis, dis-
ease detection, and decision support in this area. In this
paper, we focus on a scalable image retrieval method with
high-dimensional features for the analysis of histopathology
images. Specifically, we present a kernelized and supervised
hashing method. With a small amount of supervised informa-
tion, our method can compress a 10,000-dimensional image
feature vector into only tens of binary bits with informative
signatures preserved, and these binary codes are then indexed
into a hash table that enables real-time retrieval. We validate
the hashing-based image retrieval framework on several thou-
sands of images of breast microscopic tissues for both image
classification (i.e., benign vs. actionable categorization) and
retrieval. Our framework achieves high search accuracy and
promising computational efficiency, comparing favorably
with other commonly used methods.

Index Terms— histopathological image analysis, breast
lesion, CBIR, scalable image retrieval, hashing

1. INTRODUCTION

Breast cancer is the second most common cancer in the
United States [13]. Fortunately, early detection with percuta-
neous biopsy can significantly increase the survival rates of
patients. The usual ductal hyperplasia (UDH), atypical ductal
hyperplasia (ADH) and ductal carcinoma in situ (DCIS) are
the three stages in the development procedure from a nor-
mal terminal duct-lobular unit to an invasive cancer. Each
stage has a higher risk to develop into invasive breast carci-
noma [12]. Therefore, the therapy planning and management
relies on the diagnosis of UDH and ADH/DCIS. However,
classifying these stages is inexact and depends on subjec-
tive assessment of the pathologists, which poses a special
challenge in the diagnosis of pre-invasive breast cancer.
Computer-aided diagnosis (CAD) systems have been
employed for reliable and consistent identification of these
stages, using high-resolution images digitized from tissue

histopathology slides [6]. For examples, Petushi, et al. [11]
proposed to identify cell nuclei in histopathology slide im-
ages and classify them in a supervised classification scheme
according to morphology. Doyle et al. [3] used support vector
machine (SVM) with texture-based and nuclear architecture-
based features to distinguish between cancerous and non-
cancerous cases, and predict the grades of the breast cancer.
Dundar et al. [4] proposed a binary classifier using size,
shape, and intensity-based features extracted from identified
cells, which achieved promising accuracy.

Besides classifier-based CAD systems, content-based im-
age retrieval (CBIR) has also been widely investigated for de-
cision support in digital pathology and many other clinical
applications [5, 10]. Given an image database with ground
truth recorded, CBIR methods aim to retrieve and display im-
ages with morphological profiles most relevant and consistent
to the query image. The retrieved images also indicate the
most likely diagnosis (e.g., classification results) using ma-
jority logic.

Despite the efficacy of existing CBIR systems, new oppor-
tunities and challenges arise with the ever-increasing amount
of patient data in the current era. Intuitively, larger databases
provide more comprehensive information and may improve
the accuracy of CBIR systems. On the other hand, it is chal-
lenging to maintain the retrieval efficiency with such large-
scale data and high-dimensional features. Although cloud-
and grid-computing is a potential solution [5, 16], few efforts
have been put on the computational and scalable algorithms
in this area.

In this paper, we focus on the scalable image retrieval
methods for the image-guided diagnosis of pre-invasive
breast cancer. Particularly, we investigate hashing-based
methods [2, 15, 7, 8] for scalable and high-dimensional im-
age retrieval. A kernel-based supervised hashing model is
introduced. With a small amount of labeled information, it
is able to encode a high-dimensional image feature vector to
short binary codes. Such compact code has enabled signifi-
cant efficiency gains in the storage. It also allows real-time
search even in a collection of millions of images, owing to
the hash table of binary code. We validate this proposed
method on several thousands of breast tissue images. The
experimental results demonstrate the accuracy and efficiency
of our framework.
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Fig. 1. Overview of our proposed system.

2. METHODOLOGY

2.1. Overview of Scalable Image Retrieval Framework

Fig.1 shows our proposed framework of scalable image
retrieval-based diagnosis system. In offline learning, we
first extract high-dimensional features of the texture and ap-
pearance from digitized histopathological images based on
SIFT [9] and bag-of-words [14]. These effective features
have been used in both general computer vision tasks and
histopathological image analysis [1]. Although these features
can be directly used to measure the difference between image
pairs, computational efficiency is an issue, especially when
searching in a large database (i.e., searching k-nearest neigh-
bors exhaustively). Therefore, we employ hashing method to
compress these features into binary codes with tens of bits.
Such short binary features allow mapping easily into a hash
table for real-time search. Each feature is then linked to the
corresponding training images using inverted index. During
runtime query, high-dimensional features are extracted from
the query image and then projected to the binary codes. With
hash table, searching nearest neighbors is in constant time,
no matter the number of images. The retrieved images (via
inverted indices of nearest neighbors) can be used to interpret
this new case or for decision support using majority voting.

2.2. Kernelized and Supervised Hashing

In this section, we introduce a kernelized and supervised
hashing method for histopathological image retrieval.
Hashing Method: Given a set of image feature vec-
tors X = {x1,---,%,} C R? (in our case, x; is the
high-dimensional SIFT feature vector extracted from the
ith histopathological image), a hashing method aims to find
a group of proper hash functions h: R? ++ {1, —1}!, each of
which generates a single hash bit. Searching k-nearest neigh-
bors using tens of bits is significantly faster than traditional
methods (e.g., Euclidean distance-based brute-force search),
owing to constant-time hash table lookups and efficient Ham-
ming distance computations. Note that hashing method is
different from dimension reduction, since it needs to ensure
that the generated hash bits have balanced and uncorrelated

bit distributions, which leads to maximum information at
each single bit and minimum redundancies among all bits.

Kernelized Hashing: Kernel methods can handle practi-
cal data that is mostly linearly inseparable. For histopatho-
logical images, the phenomena of linear inseparability really
happen. Therefore, kernel functions should be considered in
hashing methods h = sign(f(x)) [7]. A kernel function is
denoted as x: R? x R? + R. The prediction function f:
R? R with kernel « plugged in is defined as:
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where X(1), -+ ,X(mm) are m(m < n) random samples se-
lected from X, a; € R is the coefficient, and b € R is the
bias. The bits generated from hash functions £ using f should
keep as much information as possible, i.e., > ., h(x;) = 0.
Therefore, b is set as the median of {37, k(x(j), Xi)a;}iy,
which is usually approximated by the mean. Adding this con-
straint into Eq. 1, we obtain
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Denote a = [ag, az, ..., a,|” . ais the most important fac-
tor that determines hash functions, In traditional kernelized
hashing methods, a is defined as a random direction drawn
from a Gaussian distribution [7], without using any super-
vised information. This scheme works well for natural im-
ages, especially scene images, because of large differences in
their appearances. However, such differences are very subtle
in histopathological images. This motivates us to leverage su-
pervised information to design discriminative hash functions
that are suitable for histopathological image retrieval.

Supervised Hashing: Intuitively, hashing methods min-
imize the Hamming distance of “neighboring” image pairs
(e.g., close in terms of the Euclidean distance in the raw
feature space). Therefore, supervised information can be
naturally encoded as similar and dissimilar pairs. Specifi-
cally, we assign label 1 to image pairs when both are benign
or actionable, and —1 to pairs when one is benign and the
other is actionable. Note that we only need to provide la-
bels for a small amount of image pairs. The undefined im-
age pairs are labeled as 0. Using such supervision, r hash
functions hy,(x);_, are then designed to generate r discrim-
inative hash bits based on Hamming distances. However,
directly optimizing the following Hamming distances is com-
plex: Dp(x;,x;) = [{klhr(xi) # he(x;),1 < k < r}|.
Therefore, code inner products can be used to simplify the
optimization process. As shown in [8], a Hamming distance
and a code inner product are actually equivalent. The least-
squares style objective function Q to the binary codes H;
is:
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where H; is the the code matrix of the labeled data Aj,
S is a label matrix consisting of 1 for similar pairs, —1
for dissimilar pairs, and 0 for undefined pairs. |.||r de-
notes the Frobenius norm. The code matrix H; is repre-
sented as H; = sgn(K;A) for binarization, where K; =
[k(x1), -, k(x;)]T € R™™, k(x;) is a kernelized vectorial
map R? — R™, A = [aj,--- ,a,] € R™*". Therefore, the
new objective function Q that offers a clearer connection and
easier access to the model parameter A is
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Optimization: Since the objective function Q is nei-
ther convex nor smooth, two optimization schemes are em-
ployed: 1) Spectral Relaxation [15] is applied to drop the
sign functions and hence convexifies the object function; 2)
Sigmoid Smoothing is employed to replace sgn() with the
sigmoid-shaped function ¢(x) = 2/(1 + exp(—x)) — 1.
Consequently, the objective function Q is able to be mini-
mized using the standard gradient descent technique. After
obtaining the discriminative hash functions via optimizing Q,
high-dimensional SIFT image features can be mapped into
informative binary bits which are further indexed into a hash
table for real-time search of similar histopathological images.

3. EXPERIMENTS

In this section, we discuss the experimental setting and results
on breast microscopic tissue images.

Experimental Setting:

2646 images (around 2250K pixels) are sampled from 657
larger region-of-interests images (e.g. SKx7K) of breast mi-
croscopic tissue, which are gathered from 116 patients', la-
beled as the benign category (UDH) and the actionable cate-
gory (ADH and DCIS). 25% of these patients in each category
are randomly selected as the testing set and the other cases
are used for training. All the experiments are conducted on
a 3.40GHz CPU with 4 cores and 16G RAM, in a MATLAB
implementation.

Around 1500 to 2000 SIFT descriptors are extracted from
each image and quantized into sets of cluster centers using
bag-of-words, in which the feature dimension equals the num-
ber of clusters. This hashing-based method is evaluated on
two tasks: image classification (i.e., benign v.s. actionable
category) and image retrieval. The classification is achieved
using the majority logic of top retrieved images. In the clas-
sification task, we compare with the classical classifiers such
as support vector machine (SVM) and AdaBoost, k-nearest
neighbors (kNN), which have been used for histopathological
image analysis [3, 5, 6, 16]. All kernel selections and param-
eters are optimized by cross-validation. In addition, we also

IData is provided by the Clarion Pathology Lab, Indianapolis and the
Computer and Information Science Department, IUPUI, Indiana, using
ScanScope digitizer at 40X magnification.
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Fig. 2. Comparison of the classification accuracy with differ-
ent dimensions of features.

compare with kNN after applying principal component anal-
ysis (PCA) as a dimension reduction method. In the evalua-
tion of image retrieval, we just compare with kNN (with and
without PCA), since SVM and Adaboost are not normally ap-
plicable to this task.

Evaluation of Image Classification: All methods are
evaluated on different dimensions of SIFT quantization, rang-
ing from 100 to 10000. We use hashing method to compress
all features to 48 bits (only 6 bytes). For fair comparison,
we also use PCA to compress all features to 48 dimensions.
Note that PCA results are float numbers (4 to 8 bytes for each
float), which are much larger than hashing results, so such
comparison actually favors the dimension reduction method.

Fig. 2 shows the comparisons of the classification task.
Most methods achieve better accuracy with higher dimen-
sional features. This is very intuitive as finer quantization
of SIFT features usually provides richer information. Particu-
larly, since the SIFT interest points cover most nuclei regions
in images, fine quantization (i.e., high-dimensional feature)
indicates the analysis on small scales. One exception is that
the accuracy of Adaboost drops when increasing the feature
dimensions. The reason is that Adaboost is essentially a fea-
ture selection method, which only choose an effective sub-
set of features for the classification. Therefore, it may lose
important information, especially in high dimensional space.
kNN-based classification also achieves good accuracy. Af-
ter applying PCA-based dimension reduction, its accuracy is
usually lower than using the original features, due to the infor-
mation loss in compression. Our hashing method and SVM
are generally better than kNN, owing to the supervised infor-
mation (i.e., labels of similar and dissimilar pairs in hashing).
Note that our hashing method only needs a small amount of
supervision, in this case, similar or dissimilar pairs of 300
images. It compares favorable to all other methods when the
feature dimension is larger than 1000. The overall classifi-
cation accuracy is 89.6% (90.5% for benign and 87.6% for
actionable category) when using 10000 dimensional features.
It is 3% to 11% better than other methods.



| |  KNN | KNN+PCA | Hashing |
| P@10 | 0809 | 0798 | 0877 |
| P@20 | 0794 | 0792 | 0876 |
| P@30 | 0786 | 0785 | 0876 |
| Times) | 756 | 007 | <001 |
| Memory | 133.59Mb | 0.64Mb | 10.26Kb |

Table 1. Comparison of retrieval precision at top-10, 20 and
30 results, along with the memory cost of training data and
query time of all testing images.

Evaluation of Image Retrieval: We have also conducted
experiments on image retrieval using 10000 dimensional fea-
tures. The retrieval precision is reported in Table 1, along
with the query time and memory cost. The results are quite
consistent with the image classification. The precision of
hashing method is nearly 88% (87.5% for benign and 87.9%
for actionable category). This is significantly better than
kNN and kNN with PCA, i.e., around 10% margin. In ad-
dition, the memory cost and runtime is also considerably
reduced. Therefore, this method is more applicable to large
scale databases (e.g., millions of images) than other methods.
Fig. 3 shows four examples of our image retrieval results. The
local differences of certain images are very subtle. Our accu-
rate results demonstrate the efficacy of the proposed method
and the feature, which captures local texture and appearance.
These retrieved images are clinically relevant and thus very
useful for decision support.

4. CONCLUSION

In this paper, we introduced a scalable image retrieval frame-
work for histopathological image analysis. Specifically,we fo-
cused on hashing-based retrieval methods, and investigated a
kernelized and supervised hashing approach for real-time im-
age retrieval. The potential applications of our framework
include image-guided diagnosis, decision support, education,
and efficient data management. In the future, we will exam-
ine other types of features, especially features stemming from
segmentation and architectures. In addition, we will incorpo-
rate feature fusion techniques into hashing methods. There-
fore, multiple types of features can be combined to improve
the retrieval accuracy. We will also evaluate our framework
on more applications in histopathological image analysis.
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