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ABSTRACT

Computer-aided diagnosis of masses in mammograms is im-
portant to the prevention of breast cancer. Many approach-
es tackle this problem through content-based image retrieval
(CBIR) techniques. However, most of them fall short of s-
calability in the retrieval stage, and their diagnostic accuracy
is therefore restricted. To overcome this drawback, we pro-
pose a scalable method for retrieval and diagnosis of mam-
mographic masses. Specifically, for a query mammographic
region of interest (ROI), SIFT descriptors are extracted and
searched in a vocabulary tree, which stores all the quantized
descriptors of previously diagnosed mammographic ROIs. In
addition, to fully exert the discriminative power of SIFT de-
scriptors, contextual information in the vocabulary tree is em-
ployed to refine the weights of tree nodes. The retrieved ROIs
are then used to determine whether the query ROI contain-
s a mass. This method has excellent scalability due to the
low spatial-temporal cost of vocabulary tree. Retrieval preci-
sion and diagnostic accuracy are evaluated on 5005 ROIs ex-
tracted from the digital database for screening mammography
(DDSM), which demonstrate the efficacy of our approach.

Index Terms— Mammographic masses, computer-aided
diagnosis (CAD), content-based image retrieval (CBIR)

1. INTRODUCTION

For years, breast cancer remains the leading cause of cancer-
related death among women. Nevertheless, early diagnosis
could improve the chances of recovery dramatically. Current-
ly, among all the imaging techniques for breast examination,
mammography is the most effective and the only widely
accepted method. Many computer-aided diagnosis (CAD)
methods have been proposed to facilitate the detection of
masses in mammograms, which is an important indicator of
breast cancer. Most of these approaches consist of two steps,
namely detection of suspicious regions and classification of
these regions as mass or normal tissue [3, 4, 8, 11].

As an alternative solution, some CAD methods utilize
content-based image retrieval (CBIR) techniques. Specifical-
ly, they compare the current case with previously diagnosed

cases stored in a reference database, and return the most rel-
evant cases along with the likelihood of a mass in the current
case. Compared with classification-based approaches, these
methods could provide more clinical evidence to assist the
diagnosis, and therefore attract more and more attention. For
example, template matching based on mutual information
was utilized to retrieve mammographic regions of interest
(ROIs), and similarity scores between the query ROI and its
best matches were used to determine whether it contained
a mass [13]. This approach was further studied using more
similarity measures (such as normalized mutual information)
[12]. Features related to shape, edge sharpness and texture
were adopted to search for mammographic ROIs with similar
masses [1]. For the same purpose, 14 image features and a k-
nearest neighbor (k-NN) algorithm were applied in [18]. This
method was improved by removing poorly effective ROIs
from the reference database [9]. These methods have shown
great value of CBIR techniques in retrieval and analysis of
mammographic masses. However, they did not consider s-
calability and were tested on at most 3200 mammographic
ROIs. This drawback limited the diagnostic accuracy, since
the larger a reference database is, the more likely that relevant
cases are found and a correct decision is made [9].

In this paper, we propose to solve the above problem
through a scalable image retrieval framework. Specifically,
SIFT descriptors extracted from database ROIs are quantized
and indexed in a vocabulary tree. To enhance the discrimina-
tive power of SIFT descriptors, statistical information about
neighbor nodes in the tree is utilized to refine the weights of
tree nodes following [15]. Given a query RO, i.e. a mass
region asserted by another CAD system, SIFT descriptors
are extracted and searched in the tree to find similar database
ROIs. These ROIs along with the similarities to the query
ROI are used to determine whether the query contains a mass
or not. Such method could retrieve from millions of images
efficiently due to its low cost of memory and computational
time.

2. PROPOSED APPROACH

In this section, we first introduce the mammographic ROI re-
trieval framework based on vocabulary tree, then present our
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Fig. 1. Overview of the proposed approach.

refinement on the weights of tree nodes, and describe how
to make a diagnostic decision using the retrieval set. The
overview of our approach is shown in Fig. 1.

Mammogram Retrieval with a Vocabulary Tree: Our
approach builds upon a popular CBIR framework that indexes
local image features using vocabulary tree and inverted files
[10, 7]. The local feature we choose here is scale-invariant
feature transform (SIFT) [6]. It has been successfully applied
to medical image retrieval and analysis [2], owing to its ex-
cellent robustness and discriminability.

In this framework, a large set of SIFT descriptors extract-
ed from a separate database are used to train a vocabulary
tree through hierarchical k-means clustering. Specifically, k-
means algorithm is first run on the entire training data, defin-
ing k clusters and their centers. This process is then recur-
sively applied to all the clusters, splitting each cluster into k&
sub-clusters. After L recursions, a vocabulary tree of depth
L and branch factor k is built. Then, all SIFT descriptors ex-
tracted from database mammographic ROIs are quantized and
indexed using this vocabulary tree and inverted files. Each
SIFT descriptor is propagated down the tree by choosing the
closest cluster center at each level. The ID of associated
database ROI is then added to the inverted file attached to
the leaf node. Given a query mammographic ROI ¢, SIFT
features are extracted and quantized. The similarity score be-
tween ¢ and a database ROI d is calculated based on how sim-
ilar their paths are. The tree nodes are weighted using term
frequency-inverse document frequency (TF-IDF) scheme or

its variations, where TF means the weight of a node is pro-
portional to its frequency in a query ROI, and IDF indicates
that the weight is offset by its frequency in all database ROIs.

Assume q is represented by a set of paths (descriptors)
q = {P7};",, where m is the number of descriptors. Each

L
path consists of L nodes P = { vf é} , where v}, denotes
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the node on the /-th level. Similarly, d is represented by d =
{de}?: ¥ where n is the number of descriptors, and de =

L
{U?’e}e—f The similarity score s (¢, d) between ¢ and d is

calculated as the average similarity between all pairs of paths:
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where the normalization factor 1/(m - n) is used to achieve
fairness between database ROIs with few and many descrip-
tors. The similarity between two paths is defined as the
weighted count of their common nodes:

P (Piq, PJ‘»i) = Zz w (UZZ) ) (UZZ, U?7£) )

where w is a weighting function, and ¢ is the Kronecker delta
function, i.e. § (a,b) = 1if a = b and § (a,b) = 0 otherwise.
In [7], w is defined following the IDF principle using entropy:

P (PL P (1)
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w (v) = idf (v) N,

where N is the total number of database ROIs, and N,, is the
number of ROIs with at least one path through node v. Note
that multiple descriptors in ¢ quantized to the same node v
contribute w (v) multiple times to s (g, d), which is equivalent
to TE.

The above framework allows the use of a very large vo-
cabulary since its computational cost is logarithmic in the
number of leaf nodes. As the vocabulary size increases, leaf
nodes become smaller and more discriminative. Therefore,
the retrieval accuracy is improved. In addition, smaller nodes
mean that less descriptors from the database need to be con-
sidered during the similarity calculation. Thus, the retrieval
speed is accelerated.

Reweighting of Vocabulary Tree Nodes: The ID-
F scheme calculates a node’s weight based on the whole
database, ignoring how frequently it occurs in a specific
mammogram. However, generally speaking, descriptors with
high frequencies in a mammogram are less informative than
those with low frequencies. As shown in Fig. 2, a majority of
descriptors are extracted from normal tissue around a mass.
Although their IDFs are generally smaller than those of the
descriptors extracted from the edge of the mass, they still
dominate the similarity score due to large TFs. To avoid such
over-counting, inspired by descriptor contextual weighting
[15], we incorporate the mammogram-specific node frequen-
cies into IDF scheme to down-weight these descriptors.
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Fig. 2. Effect of reweighting. The left image shows the origi-
nal IDF weights of each descriptor (only 300 are drawn), and
the right image shows the refined new weights. The radius
of a circle associated with a descriptor is proportional to its
weight.
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where the reweighting factors wp (P;') and wp (Py') are cal-
culated based on the frequencies of nodes along paths P; and
P]d respectively. Specifically, let n (q, vZ e) be the number of

paths of ¢ that pass through node v ,, wp (P/) is defined as:

dopw (U?,e)
wp (P =
o (vle) o (a.01)

K2

®

where w (vfz) is a weighting coefficient, usually set to

idf (vf’ 4) empirically. The square root is due to the weight-

ing of both wp (P{) and wp (Pf).

Note that wp (P}') is shared for all nodes v{ , along path
P In order to determine the importance of a descriptor P/,
wp (P{) takes into account the descriptors in ¢ quantized to

neighbor tree leaves since they also contribute to n (q7 v z)'

Consequently, nodes in a subtree with more descriptors are
heavily down-weighted. The effect of reweighting is illustrat-
ed in Fig. 2.

Diagnosis of Mammographic Masses: After the re-
trieval stage, a query mammographic ROI is classified ac-
cording to its best matched database ROIs using majority log-
ic. Formally speaking, let {di}fil denote the top K similar
database ROIs for g, each d; has a class tag ¢ (d;) € {®, S},
with the label & for mass and © for normal tissue. ¢ is
classified by a weighted majority vote of {di}iKzl, where the
contribution of d; is weighted by its similarity to ¢:

c(q) = arg max Zl s(q,d;) -6 (c,e(dy)) (6)

Table 1. Retrieval precision of vocabulary tree (Voc) and our
method (Voc + Reweighting) at different K.

K Method Mass  Normal  Total
| Voc 76.0% 82.0%  79.0%
Voc+Reweighting | 83.0% 86.0% 84.5%

5 Voc 77.6%  80.6%  79.1%
Voc+Reweighting | 83.4% 84.8%  84.1%
10 Voc 74.5%  78.7%  76.6%
Voc+Reweighting | 79.9%  82.1%  81.0%

3. EXPERIMENTS

Our experiment dataset was constructed from the digital
database for screening mammography (DDSM) [5] following
the conventions in [9, 12, 18]. First, all the mammograms
acquired on different scanners were normalized according to
DDSM’s instructions. Second, 2274 mammographic ROIs
centered on a mass (1279 malignant and 995 benign) an-
notated by experienced radiologists were extracted. Third,
2931 false positives generated by a CAD system were used
as normal regions. This CAD system is based on a cascade
of boosted Haar classifiers [14] and trained on a separate
mammogram dataset. Finally, of the above ROIs, 2174 mass
ROIs and 2831 normal ROIs, 5005 ROIs in total, were used
to construct a reference database. The remaining 200 ROIs,
with a half for masses and the other for normal regions, were
used as queries. Note that compared with experiments which
randomly select normal regions [13], our experiment setting
is more similar to realistic situations and more challenging.
It is also worth pointing out that our approach can retrieve
in real-time from a database of 1 million images, which has
been substantiated on general CBIR datasets [7, 15].

We first evaluate the retrieval performance of the proposed
approach. A system employing a vocabulary tree without
reweighting is used as the baseline approach. The evaluation
measure used here is retrieval precision, which is defined as
the percentage of retrieved database ROIs that are relevant to
query ROI. Overall the precision changes slightly as the num-
ber of retrievals increases from K=1 to K=10. The precisions
achieved at top K=1, 5, and 10 retrievals are summarized in
Table 1. Our method achieves higher precision than that of the
baseline system. Detailed results show that many incorrect
retrievals are due to the visual similarity between malignant
masses and ROIs with a bright core and spiculated edge. For
example, as shown in Fig. 3, a ROI depicting normal tissue
is incorrectly retrieved for a mass ROI. A possible solution is
to conduct a more reliable (but less efficient) re-matching be-
tween query ROI and its retrieved database ROIs, e.g. using
spatial contextual information of local features, and remove
irrelevant database ROIs. Another possible improvement is
to re-rank the retrieval set according to associated diagnostic



Table 2. Classification accuracy of vocabulary tree (Voc) and
our method (Voc + Reweighting) at different K.

K Method Mass  Normal  Total
| Voc 76.0%  82.0%  79.0%
Voc+Reweighting | 83.0% 86.0%  84.5%
5 Voc 81.0% 85.0%  83.0%
Voc+Reweighting | 86.0% 88.0% 87.0%
10 Voc 78.0% 81.0%  79.5%
Voc+Reweighting | 85.0% 86.0%  85.5%

Fig. 3. An example of a query mass ROI (left) and its top 5
best-matched database ROIs. For each RO, its class is shown.
The query ROI is correctly classified as mass according to a
weighted majority vote of the 5 database ROIs.

information, such as the patient’s age and breast tissue densi-
ty rating. These textual features can be combined with SIFT
features using feature selection and fusion methods [16, 17].

The diagnostic performance is measured using classi-
fication accuracy, which refers to the percentage of query
ROIs that are correctly classified. The classification accuracy
achieved by two methods at top K=1, 5, and 10 retrievals is
summarized in Table 2. Once again, our method consistently
outperforms the baseline system. In addition, the classifica-
tion accuracy is even better than the retrieval precision, since
irrelevant retrievals would not cause a misclassification as
long as they remain a minority of the retrieval set. Especially,
a classification accuracy as high as 87.0% is obtained at K'=5,
which is pretty satisfactory.

4. CONCLUSION

In this paper, we propose to use scalable CBIR for the auto-
matic diagnosis of mammographic masses. To retrieve effi-
ciently from a large database, which leads to better retrieval
precision and diagnostic accuracy, we employ the vocabulary
tree framework to hierarchically quantize and index SIFT de-
scriptors. Furthermore, contextual information in the vocab-
ulary tree is incorporated into TF-IDF weighting scheme to
improve the discriminative power of tree nodes. Query mam-
mographic ROIs are classified using a weighted majority vote
of its best matched database ROIs. Experiments are conduct-
ed on a database including 2174 mass ROIs and 2831 CAD-
generated false positive ROIs, which is the largest dataset to
the best of our knowledge. Excellent results demonstrate the
retrieval precision and diagnostic accuracy of our method. Fu-

ture endeavors will be devoted to refine retrieval set using s-
patial contextual information of SIFT features. Diagnostic
information can also be taken into consideration using feature
selection and fusion methods [16, 17].
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