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ABSTRACT

Accurate localization of the anatomical landmarks on distal
femur bone in the 3D medical images is very important for
knee surgery planning and biomechanics analysis. Howev-
er, the landmark identification process is often conducted
manually or by using the inserted auxiliaries, which is time-
consuming and lacks of accuracy. In this paper, an automatic
localization method is proposed to determine positions of
initial geometric landmarks on femur surface in the 3D MR
images. Based on the results from the convolutional neu-
ral network (CNN) classifiers and shape statistics, we use
the narrow-band graph cut optimization to achieve the 3D
segmentation of femur surface. Finally, the anatomical land-
marks are located on the femur according to the geometric
cues of surface mesh. Experiments demonstrate that the pro-
posed method is effective, efficient, and reliable to segment
femur and locate the anatomical landmarks.

Index Terms— Deep learning, anatomical landmark de-
tection, convolutional neural network, graph cut, mesh curva-
ture

1. INTRODUCTION

Knee joint surgery, e.g. knee replacement, has been one of
the most commonly performed surgeries since it was intro-
duced in 1968 [1]. According to the Agency for Healthcare
Research and Quality, more than 600,000 people accept knee
surgeries every year in United States. By the year 2030, 3.48
million U.S. adults are estimated to undergo total knee re-
placement [2]. Accurate localization of 3D anatomical land-
marks on the distal femur bone is vital to the success of these
computer-aided surgeries. Also, the anatomical landmarks
are important for biomechanical studies of bones and attached
muscles (e.g. joint kinematics analysis).

During knee surgery procedures, the landmark localiza-
tion process is often conducted manually or by using the in-
serted auxiliaries, such as markers, metallic pins [3]. Howev-
er, these methods cannot guarantee a high degree of localiza-
tion accuracy, especially in the views of 3D medical image.
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As a result, automatic bone landmark localization was intro-
duced in the recent studies [4, 5, 6]. Although the automatic
methods achieve high accuracy, they are not without their own
shortcomings. For example, they are either dependent heav-
ily on initial manual localization or likely lack of geometric
distinctiveness in the prediction.

As shown in Figure 1, some landmarks, that carry ge-
ometrically distinct information, include Lateral Peak (LP),
Lateral Epicondyle (LE), Lateral Distal Point (LDP), Medial
Peak (MP), Adductor Magnus Tubercle (AMT), Medial Epi-
condyle (ME) and Medial Distal Point (MDP). In this study,
we aim to locate these seven landmarks in the 3D medical
images.
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Fig. 1. Left: Anatomical landmarks on a distal femur (from
[3]). Right: One slice of 3D knee joint MR image.

In this paper, we propose a novel framework to automati-
cally locate femur landmarks from the 3D MR images using
the convolutional neural network (CNN) and graph cut opti-
mization. During the process of localization, both the global
shape and local surface curvatures are taken into considera-
tion, because they define the geometric features of landmark-
s. In what follows, we describe the methodology and experi-
ments, discuss the results, and conclude with the future direc-
tions. Our study contributes to the practical application of the
3D medical image processing by improving the accuracy of
landmark localization.



2. METHODOLOGY

The automatic landmark localization framework contains
three consecutive steps. Firstly, we detect several landmarks
with distinct surface curvatures from the 3D medical images
to calculate rigid transformation. Secondly, we transform the
mean shape of femur from the training pool to the initial shape
of the new image, and then the initial shape is refined with
the proper optimization to obtain the segmentation. This seg-
mentation step is necessary since mesh curvatures obtained
from segmentation determine the positions of anatomical
landmarks. Finally, the anatomical landmarks are localized
by both of their initial positions from segmentation and local
surface geometry.

2.1. Landmark Detection

The initial landmarks are chosen manually from the mean
mesh of the training pool, based on the geometric character-
istics such as large absolute values of curvatures.

Many methods have been applied to detect 3D landmarks
in medical images [7]. Two of the most commonly used meth-
ods are regression with random forest [8, 9], and classification
with marginal space learning and probabilistic boosting tree
[10, 11]. Although these two methods are able to achieve
a reasonable degree of accuracy and efficiency, they require
the subjective selection of features such as the Haar-like fea-
ture and steerable feature, which might be time consuming
and still cannot guarantee the optimal performance of detec-
tion. Recently, researchers have introduced deep convolution-
al neural network (CNN) to the field of automatic feature se-
lection [12, 13, 14, 15]. In the CNN, the feature map of each
layer is computed by the convolution of the entire image with
the same filter h;. h; is non-linear function (e.g. tanh) of the
weights W), and the bias terms by,. Then the feature map is

hk(i,j) = tanh[Wk * x(z,]) + bk] Q)
Sharing the same filter at each layer would reduce the mem-
ory size and improve the performance. In the particular area
of image classification, the CNN has achieved excellent per-
formance. However, most of the current applications focus
on 2D images, with few exceptions in the 3D medical image
domain, mainly due to computational complexity.

In our study, we explore the use of CNN in 3D medical
image processing in a more efficient way. We treat the local-
ization problem as the binary classification. During the train-
ing, we convert all 3D images into three sets of 2D images
with X, ¥, Z axes respectively. For each landmark, 2D images
are labeled as either positive or negative based on whether
they contain this landmark. Therefore, a total number of 3n
labels are created, with n equals to the number of initial land-
marks. Accordingly, 3n CNN classifiers are trained with both
images and their labels. During testing, the new 3D image is
also sliced into 3 sets of 2D images as above. For each axis
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of each landmark, the corresponding classifier is applied to
achieve a probability distribution of 2D images. The coordi-
nate along one axis is determined by the index of image slice
with the highest probability. Combining results from all three
classifiers, the coordinates of each landmark are obtained.
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Fig. 2. The visual description of our method.

There are many benefits associated with conducting the
detection in this way. First, this method tends to produce
stable results, since the femur position is relatively stable in
MR image without obvious translation, rotation, or scaling
problems. Second, the power of CNN is fully utilized, be-
cause the 3D problems are converted into 2D problems. Pre-
vious studies using 3D detection methods ran on every vox-
el and the surrounding area. The computation complexity is
OMNPK?). M, N, and P are the dimensions of 3D images.
K is the average side length of the 3D image cube. Compared
to the previous methods, our method is better in a sense that
the complexity is O(3MNP). The last but not the least, feature
selection is automatically solved without the bother of design-
ing the feature space. Our method only requires the configu-
ration of few system parameters, for instance, the number of
hidden layers and nodes.



2.2. Femur Segmentation

We follow the conventional method to generate segmentation
meshes within two steps. First, the mean shape is obtained by
taking the average of the training meshes, and then is rigidly
transformed into the new image as the initial segmentation.
We use the predicted landmarks obtained from the previous
steps and Procrustes analysis to calculate parameters of rigid
transformation. Procrustes analysis provides a close solution
for parameters (translation, rotation, scaling) of shape fitting.

Second, we use the narrow band graph cut optimization
for mesh refinement. Such method guarantees the shape de-
formation within the neighborhood of initialization, which
implies the shape constraints [16, 17, 18, 19]. The inner and
outer bounds of the neighborhood are set by shrinking and
inflating the initial meshes along the normal direction, re-
sulting point-to-point correspondences of two bounds. More
points are sampled along the line segments between the cor-
responding points of the inner and outer bounds. Graph is
built by connecting the surrounding points, as shown in Fig-
ure 3. This graph method is preferred since the quantity of
sampled points is controllable. Unlike the previous method-
s, this optimization does not run on voxel-level, and thus it
performs efficiently without down-sampling. After graph cut
optimization, the surface mesh is refined which contains on-
ly few negligible defects. The principle component analysis
(PCA) is used for smoothing the final results.

Outer Layer

Sampled Points

Inner Layer

Fig. 3. Left: Inner and outer bounding layers. Right: Graph
built between two layers.

Fig. 4. Left: Initial mesh from rigid transformation. Mid-
dle: Segmentation after graph cut optimization. Right: PCA
refined mesh.

2.3. Anatomical Landmark Localization

Since the segmentation mesh has point-wise correspondence
with mean mesh, the anatomical landmark locations on mesh
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can be inferred by searching by the indices of those points on
the mean mesh. However, the points with right indices can-
not guarantee to be the true landmarks. Therefore we search
for the ultimate landmark points within the neighbourhood
of previous predicted points. The points with maximum ab-
solute values of curvature are determined as the anatomical
landmarks because of landmark definition in the beginning.

Fig. 5. Final detection results in 2D and 3D views (Blue is
segmentation mesh, boxes with other colors represent differ-
ent landmark position).

3. EXPERIMENTS

The dataset are the 3D MR images of knee joints from the Os-
teoarthritis Initiative (OAI) public dataset. The OAI knee M-
RI protocol provides imaging data on multiple articular struc-
tures and features relevant to knee OA that balances require-
ments for high image quality and consistency [20]. The di-
mension of each volume is 384 x 384 x 160, and the res-
olution is 0.365 x 0.365 x 0.7mm3. Small noise and vague
boundaries exist in the images as shown in figures. In total, 50
volumes of them are used in the experiment and annotated by
experts. 40 volumes are utilized for training, 10 for testing.
Initially the annotation data are labelled masks with a paint
brush tool, they are converted into meshes for convenience.

During training, 3D volumes are sampled into 2D image
slice sets along three axes X, Y, Z respectively for each land-
mark. In each set, the slices from different volumes, which
contains the one of landmark, are labelled as positive samples
Their neighboring slices in the range +2.5mm are also set as
positive because they share very similar appearance. The neg-
ative samples are evenly selected from slices except positive
samples. During sampling, because positive samples is con-
siderably less than negative samples, more positive sample
can be achieved by rotating initial positive slices with slight
angle along axes from the volume and interpolating neigh-
boring slices from them, which increases variance of training
pool and robustness of detection.

In our experiment, the CNN contains two convolutional
layers, two max-pooling layers, one hidden layer and one 1-
ogistic regression layer. The first convolutional layer has 20
7 x 7 kernels, and the second has 40 7 x 7 kernels. Each convo-
lutional layer is followed by a max-pooling layer with kernel
size 2 x 2. The hidden layer is after the second max-pooling



Table 1. Quantitative comparison.

Landmark | Mean | STD | Max | Min
AMT 5.19 | 243 | 8.14 | 1.89
LP 464 | 223 | 7.57 | 0.89
MP 455 | 230 | 730 | 1.26
ME 479 | 291 | 9.16 | 0.77
LE 4.66 | 2.20 | 8.73 | 0.66
LDP 486 | 232 | 7.06 | 0.42
MPD 413 | 1.70 | 7.08 | 1.61

layer and it has 500 hidden neurons. The logistic regression
comes at the end. For computational efficiency, image slices
are down-sampled to 64 x 64 for both training and testing.

For testing, the input volume is also sampled in X, Y, Z
axes as independent image slice sets. The corresponding C-
NN classifiers runs on every slice of these sets and return
probability distributions along each axis for each landmark.
The position with the highest response in distribution is set as
landmark’s coordinates along one axis. Therefore the coordi-
nates are determined by combining with results from all the
three image sets. Given initial landmark positions and their
related positions in mean shape, Procrustes analysis provide
close solution of transformation parameters (scaling, rotation,
translation) for fitting mean shape in the volume. Next, the in-
ner and outer bounding layers are generated by shrinking or
inflating along the vertex normal directions for 5.0mm. 20
points are evenly sampled in each line segment between the
corresponding vertices of inner and outer bounds for building
the graph. The final positions of the anatomical landmarks are
searched in neighborhood with maximum distance 2.0mm af-
ter graph cut optimization.

Table 1 shows the evaluation results of anatomical land-
mark localization. The average time of training one CNN
classifier is about 30 minutes. The total training time is di-
rectly dependent on the quantity of landmarks. The average
time of testing is around 90 second, 80% of which is con-
sumed by running the CNN classifiers. All programs run in
MatLab and Python on a machine with a 2.66 GHz CPU and
4 GB memory.

4. CONCLUSION

In this paper, we proposed a novel framework to locate seven
anatomical landmarks of the distal femur bone. Our approach
is automatic and it combines both global shape information
and local mesh curvatures. There are several directions for
future research work. One possible direction is to enlarge
training variance and do cascade detection for higher accura-
cy. This work can also be extended to locate other anatomical
landmarks for other bones (e.g. tibia) or organs in medical
images with difference modalities.
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