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ABSTRACT

Content-based image retrieval techniques have shown great
value in computer-aided diagnosis of mammographic mass-
es. Many existing approaches adopt several features to bet-
ter characterize mammographic regions. However, most of
them fuse features through feature concatenation or result-
level combination, which cannot fully exert the discrimina-
tive power of different features and also sacrifices the overal-
l computational efficiency. To address these drawbacks, we
propose to utilize coupled multi-index for index-level feature
fusion. Specifically, complementary local features are ex-
tracted from the same locations of mammographic regions.
Then, they are separately quantized using the “bag of word-
s” (BoW) approach. Finally, quantized features are inserted
into a two-dimensional inverted index, with each feature cor-
responding to one dimension. Experiments are carried out
on a large dataset constructed from the digital database for
screening mammography (DDSM). Results demonstrate that
our approach not only achieves better retrieval precision and
diagnostic accuracy than individual features do, but also im-
proves the overall efficiency and scalability.

Index Terms— Mammography, breast masses, image re-
trieval, feature fusion, coupled multi-index

1. INTRODUCTION

For years, mammography has played a key role in diagnosis
of breast cancer, which is the second leading cause of cancer-
related death among women [1]. Unfortunately, as a major
indicator of breast cancer, mammographic masses are very d-
ifficult to diagnose due to their variety in shape, margin, size
and obscure boundaries. Consequently, a considerable por-
tion of retrospectively visible masses is missed [2], and biop-
sies are frequently conducted on normal tissues [3]. To facil-
itate the diagnosis of mammographic masses, many content-
based image retrieval (CBIR) methods have been proposed.
Specifically, they first prompt radiologists to label a region
of interest (ROI) in the query mammogram, then compare it
with database ROIs extracted from previously diagnosed cas-
es, and finally return the most similar cases along with the
likelihood of a mass in the query ROI.

In order to describe mammographic regions from variant
perspectives, many retrieval methods employ multiple fea-
tures, such as features related to intensity, texture, and shape
properties. While showing a promising direction for better
retrieval results, they raise the question of how to consoli-
date different features. Most of existing methods in the liter-
ature solve this problem in two ways. The first category, such
as [4–7], simply concatenates several feature vectors to form
a new feature. The second category, such as [8–10], first con-
ducts similarity searching using individual features and then
integrates their results. Nevertheless, either category has its
limitations. In particular, feature concatenation is not suitable
for a heterogeneous collection of features even with feature
normalization. For instance, variant features may not agree
on the adopted distance measure during feature matching, and
even if they do, the feature with large distance will dominate
the matching process. Result-level fusion, on the other hand,
usually introduces parameters such as weight of each feature,
which need to be elaborately tuned and may not generalize
well to different datasets. Moreover, both categories of meth-
ods compromise the computational efficiency and scalability,
since the overall processing time will be at least the sum of
time required by each feature. This could be a serious prob-
lem when many features are exploited to retrieve from a large
database.

To overcome the above drawbacks, we propose to fuse
complementary local features with coupled multi-index [11].
A coupled multi-index is basically a multi-dimensional in-
verted index, where each dimension corresponds to one fea-
ture. Our method exploits a two-dimensional inverted index
to unify two features, namely scale-invariant feature trans-
form (SIFT) [12] and local intensity histogram [13]. The
overview of our approach is shown in Fig. 1. Specifical-
ly, SIFT and local intensity histogram are extracted from
database ROIs and quantized according to the “bag of words”
(BoW) method [14]. Then, all the quantized feature cou-
ples are inserted into coupled multi-index. Given a query
ROI, features are extracted and quantized in the same way,
and then searched in the coupled multi-index to find similar
database ROIs. These ROIs vote to determine whether the
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Fig. 1. Overview of the proposed approach.

query contains a mass or not [15].
Our approach has many advantages over current method-

s. First, it could handle intrinsically different local features
since they are quantized separately. Second, no parameters
are added and the tuning issue is bypassed. Third, by de-
creasing the portion of database features that are considered
during feature searching, the presented approach improves the
overall efficiency and scalability. Last but not least, the index-
level fusion also serves as an index, saving the trouble of im-
plementing an extra indexing scheme.

2. PROPOSED APPROACH

In this section, the two features employed in our approach are
first described. Then, we revisit the traditional BoW model
and inverted index, taking SIFT as an example. Finally, we
present coupled multi-index, which incorporates two features
at index level. After obtaining the most similar database ROIs
along with their similarity scores to query ROI, weighted ma-
jority vote [15] is carried out to classify the query ROI as a
mass or normal tissue.

Complementary Features: The primary feature chosen
in our method is SIFT [12]. SIFT has been successfully ap-
plied to medical image retrieval and analysis [15–18], owing
to its excellent robustness and discriminative power. Briefly
speaking, a series of SIFT features are extracted from a mam-
mographic ROI as follows. Scale-invariant keypoints are
first detected by finding local extrema in the difference-of-
Gaussian (DoG) space. Then, for each keypoint, a surround-
ing region of size 16×16 is identified in a certain scale, and a
128-dimensional gradient orientation histogram is calculated
as feature vector.

As for the secondary feature, we adopt local intensity his-

togram [13]. Intensity-based features, such as mean and s-
tandard deviation of intensity values, have been widely used
in mammographic mass retrieval methods [5,8]. Specifically,
our approach calculates a 16-dimensional intensity histogram
for each SIFT surrounding region, coupling the SIFT feature.

BoW and Inverted Index: Since it is computational in-
feasible to match vectorial SIFT features in large-scale im-
age retrieval, BoW model [14] is adopted to quantize these
features. To this end, a large set of SIFT features extracted
from a separate database are used to train a visual vocabulary
through k-means clustering. Each cluster center is referred to
as a “visual word”, which is an analogue of “word” in tex-
t retrieval. All the visual words form a “visual vocabulary”
{ui}kS

i=1, where kS is the size of the vocabulary.
The SIFT features extracted from database ROIs are quan-

tized using {ui}kS

i=1. In particular, a SIFT feature vector, xS ,
is mapped to the ID of its nearest visual word using a quanti-
zation function fS :

fS
(
xS
)
= argmin

i

∥∥xS − ui

∥∥
2
. (1)

Thus each ROI is described by a series of visual words, from
which comes the name “bag of words”.

The quantized database features naturally generate a for-
ward index, which lists the words per ROI. To further acceler-
ate the searching process, the forward index is then “inverted”
to develop an inverted index, which lists the ROIs per word.
Specifically, the inverted index consists of kS files, and the
i-th file records the IDs of database ROIs containing word i.

In addition, the importance of each visual word is mea-
sured using term frequency-inverse document frequency (TF-
IDF) [19] or its variations. TF of the i-th word in a database
ROI d, denoted as tfS (i, d), represents the number of fea-
tures extracted from d that are quantized to word i. IDF of
the i-th word in the entire database, denoted as idfS (i), is
normally defined using entropy:

idfS (i) = log
N

NS
i

, (2)

where N is the total number of database ROIs, and NS
i is

the number of ROIs with at least one SIFT feature quantized
to word i. The definition of IDF reflects the observation that
visual words occurring frequently in the database are less in-
formative. TF-IDF can also be employed to define the l2 norm
of d:

‖d‖S2 =

√∑
i
(tfS (i, d))

2
, (3)

which reflects the number of visual words in d. The TF scores
are stored in the inverted index.

For a given query ROI q, its SIFT features are quantized
and TF scores are calculated in the above manner. The quan-
tized features are then searched from the inverted index to get
the most similar database ROIs. It is worth mentioning that,
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during the searching process, only those inverted files corre-
sponding to the query visual words are considered. What’s
more, the portion of involved inverted files can be further de-
creased by increasing vocabulary size. Compared with for-
ward index, which searches from all the database features,
inverted index promotes the searching efficiency dramatical-
ly. The similarity score between q and any database ROI d is
calculated based on how similar their visual words are:

sS (q, d) =

∑
i tf

S (i, q) · tfS (i, d) ·
(
idfS (i)

)2
‖q‖S2 · ‖d‖

S
2

. (4)

Note that the visual words are weighted using TF-IDF, and
the normalization factor 1

/(
‖q‖S2 · ‖d‖

S
2

)
is used to achieve

fairness between database ROIs with few and many features.
Coupled Multi-Index: Similar to SIFT, local intensity

histogram can also be quantized following the BoW approach.
The visual vocabulary, feature vector, and quantization func-
tion are denoted as {vj}kI

j=1, xI , and f I respectively, with kI
representing the vocabulary size.

After obtaining fS and f I , a couple of SIFT and local
intensity histogram extracted from the same SIFT keypoint,
x =

(
xS ,xI

)
, is quantized to a pair of visual word IDs:

f (x) =
(
fS
(
xS
)
, f I

(
xI
))

. (5)

Quantized database features are inserted to a coupled multi-
index, which is illustrated in Fig. 2. The coupled multi-index
is basically a matrix of inverted files, with two dimensions
corresponding to SIFT and intensity visual words. The (i, j)-
th inverted file stores the IDs of ROIs whose SIFT and in-
tensity features are quantized to ui and vj respectively. Ap-
parently, a traditional inverted index can be regarded as one
dimension of a coupled multi-index.

TF-IDF and l2 norm could be easily generalized to cou-
pled multi-index. More specifically, tf (i, j, d) is defined as
the number of feature couples in d that are quantized word
(i, j). idf (i, j) and ‖d‖2 are defined similar to Eq. (2) and
Eq. (3):

idf (i, j) = log
N

Ni,j
, (6)

‖d‖2 =

√∑
i,j

tf2 (i, j, d) , (7)

where Ni,j is the number of ROIs with at least one feature
couple quantized to word (i, j).

Given a query ROI q, its quantized feature couples are
searched from the coupled multi-index, considering only the
inverted files corresponding to q’s visual words. The similar-
ity score between q and any database ROI d is computed as
follows:

s (q, d) =

∑
i,j tf (i, j, q) · tf (i, j, d) · idf2 (i, j)

‖q‖2 · ‖d‖2
. (8)

d

 ,S Ix x x

        , ,S S I If f f i j x x x

1  i  Sk

1


j
Ik


 , , ,d tf i j d




Fig. 2. Illustration of coupled multi-index.

It is noteworthy that coupled multi-index substantially
outperforms traditional inverted index with regard to retrieval
precision and efficiency. Generally speaking, as the vocabu-
lary size increases, visual words become more discriminative,
leading to better retrieval precision. Besides, larger number
of inverted files means that less database features need to
be considered during feature searching. Thus, the searching
speed is accelerated. Unfortunately, inverted index could not
afford a large vocabulary, since its computational complex-
ity for feature quantization is linear in vocabulary size, i.e.
O (kS) for SIFT and O (kI) for local intensity histogram.
Coupled multi-index solves this dilemma: it enjoys the ben-
efits of vocabulary size kS · kI with a small computational
overhead of O (kS + kI) for feature quantization.

3. EXPERIMENTS

The experiments are carried out on the dataset constructed
in [15] based on the digital database for screening mammog-
raphy (DDSM) [20]. To the best of our knowledge, this is the
largest dataset in mammographic mass retrieval. In particu-
lar, 1,840 mass ROIs and 8,713 CAD-generated false posi-
tive ROIs (10,553 ROIs in total) form a database, another 500
mass ROIs and 500 false positive ROIs are used as queries.

Three baseline systems are implemented for comparison.
The first two methods exploit traditional inverted index on
SIFT and local intensity histogram respectively. SIFT [12,15–
18] and intensity-based features [5, 8, 13] have demonstrat-
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Table 1. Retrieval precision
SIFT Intensity ResultFusion MultiIndex

Mass 78.3% 74.5% 83.9% 86.9%

Normal 81.3% 76.7% 83.5% 89.3%

Total 79.8% 75.6% 83.7% 88.1%

ed good performance in medical image retrieval and analysis.
The third approach combines the results of the first two meth-
ods. Similar to [8,9], the similarity score s (q, d) is a weighted
sum of sS (q, d) and sI (q, d). These compared methods and
the proposed approach are referred to as “SIFT”, “Intensity”,
“ResultFusion” and “MultiIndex” in the following analysis.

First of all, retrieval precision is evaluated, which is de-
fined as the percentage of retrieved database ROIs that are
relevant to query ROI. The precision scores of all the method-
s at top 10 retrievals are summarized in Table 1. An example
is provided in Fig. 3 for visual evaluation. The results show
that our method remarkably outperforms SIFT and Intensity,
and also surpasses ResultFusion.

Second, classification accuracy is measured, which refers
to the percentage of query ROIs that are correctly classified.
Remember that a query ROI is classified as mass or normal
tissue according to a weighted majority vote of its retrieved
database ROIs [15]. The accuracy scores at top 10 retrievals
are reported in Table 2. Once again, our method consistent-
ly outperforms all the baseline approaches. Furthermore, the
classification accuracy is systematically higher than the re-
trieval precision, since irrelevant retrievals would not cause
a misclassification as long as they remain a minority of the
retrieval set. Especially, the proposed approach achieves a
satisfactory classification accuracy of 90.3%.

Finally, efficiency and scalability are investigated using
the processing time needed to retrieve a query ROI. As shown
in Table 3, “BoW” means the time cost of feature extrac-
tion and quantization, “Search” indicates the time needed to
search quantized feature from inverted index or multi-index,
and “Total” is the entire processing time, i.e. sum of “BoW”
and “Search”. Apparently, the time cost for ResultFusion is
the sum of those for SIFT and Intensity. As for MultiIndex,
since quantization of a feature couple is basically quantiza-
tion of separate features, the time needed for BoW calculation
would be the sum of those for SIFT and Intensity BoW calcu-
lation. Nevertheless, since its vocabulary size k = kS · kI is
much larger than kS and kI , the number of database features
considered in each search is much smaller, leading to shorter
searching time. Altogether, efficiency and scalability are sig-
nificantly improved using coupled multi-index. Moreover, as
the database becomes larger, the ratio of searching time over
total time will increase, and the advantage of multi-index will
be further enhanced.

Table 2. Classification accuracy
SIFT Intensity ResultFusion MultiIndex

Mass 80.4% 75.3% 85.2% 89.0%

Normal 82.6% 78.5% 86.0% 91.6%

Total 81.5% 76.9% 85.6% 90.3%

Table 3. Processing time (second)
SIFT Intensity ResultFusion MultiIndex

BoW 0.31 0.22 0.53 0.53
Search 0.83 1.05 1.89 0.21

Total 1.14 1.27 2.42 0.74

Fig. 3. A query ROI (left) and its top 5 retrieved database
ROIs (right) returned by SIFT, Intensity, ResultFusion and
MultiIndex (from top to bottom). For each ROI, its class is
shown below. ⊕ stands for a mass, and 	 represents normal
tissue

4. CONCLUSION

In mammographic mass retrieval, it is widely recognized that
complementary features could lead to better performance.
However, existing fusion methods may not fully integrate
the strength of variant features, and they also sacrifice the
computational efficiency and scalability. In this paper, we
exploit coupled multi-index for index-level fusion of SIFT
and local intensity histogram. The proposed approach is su-
perior to current methods in many aspects. Specifically, it is
suitable for heterogeneous local features, introduces no extra
parameters, improves the overall efficiency and scalability,
and serves as an index structure. Experiments are implement-
ed on a dataset [15] built from DDSM [20], demonstrating
the efficacy of our approach.
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[6] F. Narváez, G. Dı́az, and E. Romero, “Multi-view in-
formation fusion for automatic BI-RADS description of
mammographic masses,” in Medical Imaging 2011:
Computer-Aided Diagnosis, 2011, vol. 7963 of Proc.
SPIE, pp. 79630A–1–7.
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