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ABSTRACT

Morphological retrieval is an effective approach to explore
neurons’ databases, as the morphology is correlated with neu-
ronal types, regions, functions, etc. In this paper, we focus on
the neuron identification and analysis via morphological re-
trieval. In our proposed framework, both global and local fea-
tures are extracted to represent 3D neuron data. Then, com-
pacted binary codes are generated from original features for
efficient similarity search. As neuron cells usually have tree-
topology structure, it is hard to distinguish different types of
neuron simply via traditional binary coding or hashing meth-
ods based on Euclidean distance metric and/or linear hyper-
planes. Thus, we propose a novel binary coding method based
on the maximum inner product search (MIPS), which is not
only more easier to learn the binary coding function, but also
preserves the non-linear characteristics of neuron morphol-
ogy data. We evaluate the proposed method on more than
17,000 neurons, by validating the retrieved neurons with as-
sociated cell types and brain regions. Experimental results
show the superiority of our approach in neuron morpholog-
ical retrieval compared with other state-of-the-art methods.
Moreover, we demonstrate its potential use case in the identi-
fication and analysis of neuron characteristics.

Index Terms— neuron morphology, large-scale retrieval,
binary coding, inner product

1. INTRODUCTION

How the brain works is one of the most challenging issues in
neuroscience. As neurons are the basic elements of brain, un-
derstanding their properties and network connectivity is the
key step to tackling this challenge. Generally, neurons tend
to express distinct morphologies according to their cell types,
brain regions, functions, etc. Therefore, it is reasonable and
simple to explore the neuronal properties through their mor-
phologies. Current visualization and image processing tech-
niques [1, 2, 3] make it possible to reconstruct 3D neuronal

models from microscopic images, and the increasingly 3D
neuron image databases such as NeuroMorpho [4, 5] provide
a platform to associate their properties and morphologies. Ac-
cordingly, neuron retrieval with similar morphology is an ef-
fective way to help neuroscientists identify unknown neurons
and discover the relationship between their morphology and
characteristic.

Recently, the well-studied neuron tracing techniques fa-
cilitate the research on neuron morphological retrieval [6, 7,
8, 9]. Costa et al. [10] proposed the concept of neuromorpho-
logical space, which analyzed the tree-like shape and identi-
fied the most important geometrical features in neuron cell.
Then, Wan et al. [11] designed BlastNeuron for automated
comparison, retrieval and clustering of 3D neuron morpholo-
gies. In the retrieval stage, BlastNeuron searches for similar
neurons via the normalization of rank scores in terms of the
closeness of feature vectors. Despite its high accuracy, this
method could be inefficient when handling a large-scale neu-
ron database. Therefore, Mesbah et al. [12] proposed a data-
driven hashing scheme, i.e., hashing forest, to search among
large neuron databases. By establishing multiple unsuper-
vised random forests, 128 or more binary bits are generated
to represent morphological features. Hash forest algorithm
has achieved efficient and accurate results in neuron retrieval.
Nonetheless, it usually needs a large number of bits (e.g.,
larger than 128), while its efficiency can be further improved
with shorter binary codes. More importantly, the encoding
process relies on the embedding of the Euclidean distance,
which may not be a suitable similarity measure for neuron re-
trieval issue, as features of neuron data usually lie in complex
feature spaces that may not be linearly separable. Therefore,
it is desired to explore advanced hashing algorithms to solve
these challenges.

As described in [12], binary coding or hashing techniques
have achieved great success in efficient retrieval among large-
scale databases, with many data-dependent methods proposed
in recent years, including, but not limited to, Spectral Hash-
ing (SH) [13], Anchor Graph Hashing (AGH) [14], Iterative
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Fig. 1. Overview of the proposed neuron morphological retrieval framework.

Quantization (ITQ) [15], Inductive Manifold Hashing (IMH)
[16], etc. However, they may not be directly applicable to
the neuron retrieval problem, as the features of 3D neuron
morphological data are dramatically different from 2D natu-
ral images. For example, the arborization structure can make
different types of neurons hard to differentiate. In addition,
although supervised binary coding and hashing methods have
already been investigated in medical image analysis [17, 18],
it is preferred to employ unsupervised methods for neuron re-
trieval, since there may not be accurate annotations for all
neurons.

In this paper, we aim to investigate binary coding algo-
rithms that can accurately perform large-scale neuron mor-
phological retrieval, which is critical for neuron identifica-
tion and analysis. Specifically, we design a novel binary cod-
ing method to retrieve neuron data with high precision and
efficiency. Unlike prior methods learning hashing functions
to embed Hamming distances and Euclidean distances, our
method obtains effective coding functions for maximum inner
product search (MIPS), which has the flexibility to differenti-
ate complex features that are linearly inseparable in the origi-
nal feature space. In fact, this strategy is particularly suitable
for the neuron morphology data, which is usually nonconvex
and nonsmooth. Moreover, we introduce an auxiliary variable
such that the challenging MIPS problem can be efficiently op-
timized by several iterations. We validate the efficacy of the
proposed method in the neuron retrieval problem with a large
database, and it outperforms several other binary coding or
hashing methods. In addition, according to the neuron infor-
mation provided by NeuroMorpho [5], our proposed method
can retrieve similar neurons not only in morphology, but also
in cell type, brain region, etc.

2. METHODOLOGY

2.1. Overview

Fig. 1 shows the overview of our neuron retrieval method.
At first, we extract both global and local morphological fea-

tures to represent 3D neuron data, which is consistent with
[10, 11, 12]. Global features such as neuronal width, height
and depth are used for revealing the whole morphologies, and
local features include the bifurcation and compartment infor-
mation which represent the particular diversity among neu-
rons. Subsequently, the neuron morphological retrieval prob-
lem can be regarded as the similarity search of their features.
Although directly measuring the similarity between morpho-
logical features offers an accurate solution, the computational
efficiency is an issue, especially when searching in a large-
scale database. Therefore, we aim to learn a binary coding
function which can maximize inner product between the fea-
ture of training neurons and a set of randomly sampled neu-
rons. With this coding function, the features of query neuron
and every neuron in the database can be compressed into short
binary codes. Then, their inner product can be calculated and
ranked with descending order. Finally, select neurons in the
database with top-K largest inner product, and the charac-
teristics of query neuron can be identified based on these re-
trieved neurons.

2.2. Binary Coding for Maximum Inner Product Search

In this section, we introduce a novel binary coding method
based on maximum inner product search to solve the neuron
morphological retrieval problem.

Maximum Inner Product Search (MIPS): The problem
of MIPS plays a critical role in computer vision and machine
learning domains. For the features of neuron database A =
{a1; · · · ;an} ⊂ Rn×d and a query neuron q ∈ R1×d, the
MIPS problem can be defined as:

p = argmax
a∈A

aqT (1)

which means finding the largest inner product between q and
each element in A. As demonstrated in [17], the Hamming
distance and code inner product has a one-to-one correspon-
dence. To accelerate computation and save storage, it is prac-
tical to employ binary coding method to implement MIPS

603



problem. A coding function h are learned to map original
feature vectors to r bits of binary code. Thus, problem (1) is
reformulated as:

p = argmax
a∈A

h(a)h(q)T (2)

Compared with common binary coding methods based on
Hamming distance minimization, h is likely to be a non-
linear function through MIPS [19], which is more suitable for
the neuron retrieval dataset that is linearly inseparable. Now
the question is how to obtain the binary coding function h via
the neuron database.

Coding Function Optimization: As shown in Fig. 1,
optimize coding function for MIPS problem is the key step
in large-scale neuron morphological retrieval. Assume A =
{ai}ni=1 are the feature vectors of n training neurons with d
dimensions, and X = {xj}mj=1 is random sampling from A

with ratio of k. Denote S = AXT as the similarity matrix
between A and X. After binarizing S by its mean value, we
aim to learn a coding function h for A and X, which can well
approximate S in the form of binary codes:

min
h

∥∥∥h(A)h(X)
T − S

∥∥∥2 (3)

As this highly non-convex formula is hard to solve, we discard
its quadratic part (i.e., normalization term) after expansion
and only focus on the correlation between similarity matrix S
and (h(A)h(X)T). Thereby, the objective can be re-defined
as:

max
h

trace(h(A)TSh(X)) (4)

In practice, we find that omitting the quadratic part does not
affect the binary coding performance, and makes the highly
non-convex problem easy to optimize, which is more efficient
for the non-linear differentiation of neuronal morphologies.
With the binary coding matrix W ∈ Rd×r and the sign func-
tion, which h(A) = sgn(AW), we obtain eq. (4) in a new
form:

max
W

trace(sgn(AW)TSsgn(XW)) (5)

To optimize (5), we first assume that the right part is fixed
as a constant matrix Z= sgn(XW). Then, we introduce an
auxiliary variable B as the binary codes of A to replace the
left part sgn(AW), and eq. (5) can be separated into two
terms:

max
B,W

trace
[
(BTSZ)− λ‖B−AW‖2

]
(6)

The first term maximizes inner product via the binary coding
matrix W, and the second term ensures that AW can approx-
imate with the target binary codes B. Denote λ as a trade-off

SH [13] AGH [14] ITQ [15] Ours
top5 0.8690 0.8738 0.8627 0.9048
top10 0.8087 0.8198 0.8131 0.8556
top15 0.7587 0.7860 0.7881 0.8214
top20 0.7125 0.7488 0.7673 0.7863

Table 1. Average precision of four methods under different
number of retrievals for 252 query neurons.

parameter between these two items. Subsequently, W can be
optimized by several alternative iterations with B:{

B = sgn(SZ+ 2λAW)
W = A†B

(7)

where A† is the pseudo-inverse of A. We denote such al-
ternative iterations as inner loop and local optimal W of eq.
(6) will be acquired until converge or reach maximum t itera-
tions. Then update eq. (5) and Z with current W. To obtain
more accurate coding matrix for eq. (5), several outer iter-
ations between (5) and (6) are still needed until coverage or
reach maximum T iterations.

With acquired coding matrix W, every neuron morpho-
logical features xi ∈ R1×d can be mapped to binary codes
via the coding function h(xi) = sgn(xiW). Accordingly,
the similarity search problem between query neuron and the
neuron database is transformed as the inner product ranking
of their binary codes. For a query neuron, the similar neurons
are defined as the corresponding top-K largest inner prod-
uct, and these similar neurons can further be used to interpret
biomedical meanings of the query neuron.

3. EXPERIMENTS

We first compare the proposed neuron retrieval method with
other relevant methods in this section. Then we will discuss
its use case in neuron identification and analysis.

During the experiment, we use 17,107 public 3D neu-
ron data in NeuroMorpho [5], which are reconstructed from
microscopy images of Drosophila Melanogaster. L-measure
toolbox [20] is employed to extract morphological features.
In total, there are 38 dimensional global and local features ex-
tracted from each neuron. In the binary coding stage, we ex-
tract every neuron’s feature in the database as training data A,
and X is random sampled from A with 2:1 ratio. Maximum
iterations of the inner loop and outer loop during optimiza-
tion are 100 and 20 respectively. The trade-off parameter λ is
set as 34. All experiments are conducted on a desktop with
3.6GHz processor of eight cores and 32G RAM.

To evaluate the efficacy of our method for neuron mor-
phological retrieval problem, we compare the retrieval pre-
cision with other three state-of-the-art binary coding and
hashing methods, i.e., Spectral Hashing (SH) [13], Anchor
Graph Hashing (AGH) [14], and Iterative Quantization (ITQ)
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Fig. 2. For each neuron on the left (red), top-3 retrieved neu-
rons on the right (blue) through our method, which illustrate
the morphological similarity between query neurons and re-
trieved neurons.

[15]. All the neurons are compressed into 32 bits of binary
code through these methods during the comparison. As neu-
ron morphology is correlated with their cell types and brain
regions, for the Drosophila Melanogaster neuron database
which has various cell types (around 100) and brain regions
(around 50), we select 233 projection neurons (PN) in olfac-
tory bulb and 19 lateral horn neurons (LH) in protocerebrum
as queries, which is consist with [11]. In the testing phase,
the correct retrieved neurons are defined as if they present the
same cell types and brain regions with the query neuron.

For all the PN and LH queries (252 in total), Table. 1
reports their average retrieval precision of four competitive
methods under different number of candidates. Denote re-
trieval precision as the percentage of correct neurons in the
candidates. According to Table. 1, our method can obtain the
most precise retrieval results among these competitive meth-
ods. It is mostly benefited from the nonconvex optimization
strategy of MIPS, which is particularly suitable for the lin-
ear inseparable neuron morphological retrieval problem. Fig.
2 present four random selected query neurons and their cor-
responding top-3 retrieved neurons through our method. We
employ Vaa3D [1] to display these neurons. Generally, the re-
trieved neurons present similar morphologies with their query
neurons, which verify the effectiveness of feature extraction
procedure and the proposed binary coding method.

Beside the retrieval precision, the proposed method also
demonstrates the computational efficiency in the testing
phrase. Compared with traditional similarity search methods
such as k-Nearest Neighbors, our binary coding method is
30 times faster (252 queries’ retrieval in 0.17 seconds). This
merit will be particularly beneficial in the future when more
dimensional features are extracted and larger scale databases
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Fig. 3. The distribution of cells types and brain regions for
top-20 retrieved neurons.

are used.
With the development of neuron tracing, an increasing

number of newly reconstructed neuron morphologies are re-
leased in recent years. However, most of them lack basic
annotations such as cell types, brain regions, transmitters.
Therefore, identifying their characteristics is an urgent need
for further exploration [21]. Based on the fine retrieval re-
sults, it is reasonable to apply our method for neuron identi-
fication and analysis. We select a query neuron and assume
that its characteristics are unknown. After running the mor-
phological retrieval procedure by our method, Fig. 3 shows
the distribution with respect to top-20 retrieved neurons’ cell
type and brain region. According to the statistical informa-
tion presented in Fig. 3, the query neuron most likely locates
in olfactory bulb, and it belongs to the class of projection
neuron. From these characteristics, we can reasonably infer
that the query neuron is relevant to drosophila’s olfactory
system, and it serves as a connector with other function parts.
Meanwhile, the information provided in NeuroMorpho [5]
also verified our inference about the query neuron.

4. CONCLUSIONS

In this paper, we introduced a large-scale morphological
retrieval framework for neuron identification and analysis.
Specifically, we proposed a novel binary coding method
based on MIPS, which not only achieved fast retrieval, but
also differentiated the linearly inseparable morphological
space with high precision. Experimental results verified the
efficacy of our binary coding method and also illustrated its
application in neuron identification. Based on the present
work, we will study how to extract more typical features from
3D neuron image in the future, which can indicate different
levels of morphological similarity. We will also apply the
morphological retrieval method to explore the relationship
between neuronal structure and function.
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