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Abstract—In the analysis of histopathological images, both holis-
tic (e.g., architecture features) and local appearance features
demonstrate excellent performance, while their accuracy may vary
dramatically when providing different inputs. This motivates us
to investigate how to fuse results from these features to enhance
the accuracy. Particularly, we employ content-based image re-
trieval approaches to discover morphologically relevant images for
image-guided diagnosis, using holistic and local features, both of
which are generated from the cell detection results by a stacked
sparse autoencoder. Because of the dramatically different charac-
teristics and representations of these heterogeneous features (i.e.,
holistic and local), their results may not agree with each other,
causing difficulties for traditional fusion methods. In this paper,
we employ a graph-based query-specific fusion approach where
multiple retrieval results (i.e., rank lists) are integrated and re-
ordered based on a fused graph. The proposed method is capable
of combining the strengths of local or holistic features adaptively
for different inputs. We evaluate our method on a challenging
clinical problem, i.e., histopathological image-guided diagnosis of
intraductal breast lesions, and it achieves 91.67% classification
accuracy on 120 breast tissue images from 40 patients.

Index Terms—Breast lesion, feature fusion, histopathological
image analysis, large-scale image retrieval, stacked sparse autoen-
coder (SSAE).

I. INTRODUCTION

R ECENTLY, digitized tissue histopathology for micro-
scopic examination and automatic disease grading has

become amenable to the application of computerized image
analysis and computer-aided diagnosis [1]. Many methods have
been proposed to tackle this important and challenging use
case, by investigating object level and spatially related features
[2]–[4] and employing learning-based classifiers [5]–[7] or
content-based image retrieval (CBIR) [8]–[12]. In general, ac-
curate analysis of histopathological images requires to examine
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cell-level information for accurate diagnosis, including indi-
vidual cells (e.g., appearance [4], [13] and shapes [14]) and
architecture of tissue (e.g., topology and layout of all cells [2]).
These features cover both local and holistic information, all
benefiting the diagnosis accuracy of histopathological images.
Therefore, the complementary descriptive capability of local
and holistic features naturally raises the question of how to in-
tegrate their strengths to yield more satisfactory results when
classifying histopathological images. However, the characteris-
tics, algorithmic procedures and representations of these fea-
tures can be dramatically different, making them nontrivial to
fuse. For example, architecture features [2] are represented as a
low-dimensional vector of statistics, while local feature can be
represented as high-dimensional bag-of-words (BoW) [15] and
compressed as binary codes to improve the efficiency [4], [16],
[17].

Generally, fusion can be carried out on the feature or rank-
levels. In our context (i.e., differentiation of cancers), this means
to combine different types of features in a histogram [18], [19]
for learning-based classification, or to fuse the ordered results
from CBIR methods [20], [21], and then, classify via majority
voting, both of which are fundamental problems. Unfortunately,
many existing fusion methods still have limitations for medical
image analysis, especially in terms of the robustness, scala-
bility, and generality. For example, feature-level fusion usu-
ally concatenates multiple feature vectors (e.g., histogram of
color features or texture features) and produces a new feature
vector that has a higher dimensionality. However, when these
features are heterogeneous (e.g., having significantly different
dimensions and characteristics such as low-dimensional archi-
tecture feature [2] and high-dimensional appearance feature [4]
in histopathological image analysis), feature-level fusion may
not be able to effectively integrate their strengths. On the other
hand, rank-level fusion combines different retrieval results (i.e.,
a list of retrieved images), obtained from using different types of
features. This approach usually needs to decide which features
should have an important role in the retrieval, which is quite
difficult to determine online for a specific input with a large
database.

In this paper, we focus on the rank-level fusion of local and
holistic features for the image-guided diagnosis of breast can-
cer, i.e., differentiation of the benign (the usual ductal hyper-
plasia) and actionable (the atypical ductal hyperplasia and duc-
tal carcinoma in situ) cases. Particularly, we employ content-
based image retrieval to discover clinically relevant instances
from an image database, which can be used to infer and
classify the new image. Given image ranks (i.e., retrieval re-
sults) obtained from holistic and local features, generated based
on a stacked sparse autoencoder (SSAE), a data-driven and
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graph-based method [21] is employed for accurate, robust, and
efficient fusion, by evaluating the quality of each rank online. Al-
though this graph fusion method was originally designed for nat-
ural images, it also provides an effective solution for the fusion
of heterogeneous information in the domain of histopathological
image analysis. We validate our framework on 120 breast tissue
images from 40 patients. The experimental results demonstrate
the accuracy and efficiency of our framework. A preliminary
version of this study is published in [22]. In this paper, we pro-
vided comprehensive reviews, added details of our cell detection
module, and conducted additional evaluations to demonstrate
the efficacy of our method.

The rest of this paper is organized as follows. Section II
reviews relevant work of histopathological image analysis and
feature fusion. Section III presents our framework for real-time
cell examination. Section IV shows the experimental results on
lung microscopic tissue images. Concluding remarks are given
in Section V.

II. RELATED WORK

A. Features for Histopathological Image Analysis

There are three main categories of features for histopatholog-
ical image analysis.

1) Morphology Features: Dundar et al. [14] proposed to seg-
ment cells using a Gaussian mixture model and a watershed
algorithm, and describe individual cells by their size, shape,
and nucleoli. After that, multiple-instance learning (MIL) with
a support vector machine (SVM) is used to identify the stage of
breast lesion. Petushi et al. [23] employed adaptive threshold-
ing and morphological operations to segment cells and calculate
high-density areas of different types of nuclei as features. These
cells are then classified with linear discriminant analysis and
forward/backward search methods.

2) Graph-Based Features: The second category includes
CAD systems that use nucleus detection followed by graph-
based image characterization. Basavanhally et al. [2] proposed
to detect locations of nuclei using a combination of region grow-
ing and Markov random fields. Three graphs (i.e., Voronoi di-
agram, Delaunay triangulation, and minimum spanning tree)
are constructed to describe the arrangement of cells. An SVM
is then employed to classify the high or low presence of lym-
phocytic infiltration that can be used to evaluate phenotypic
changes in breast cancer. There are other graph-related features
for histopathological image analysis. Bilgin et al. [24] designed
simple cell graphs, probabilistic cell graphs, and hierarchical
cell graphs from the image segmentation results. Then, they
calculated a set of global metrics from these cell graphs for
breast tissue modeling and classification. Demir et al. [25] pro-
posed a computational method based on augmented cell graphs
from magnification tissue images for automated cancer diagno-
sis. Bilgin et al. [24] proposed extracellular-matrix-aware cell-
graph mining for bone tissue modeling and classification, by
precisely modeling the structure-function relationships.

3) Texture Features: Texture features such as SIFT [13],
wavelet [3], and filter banks [26] are also employed to model
phenotypic appearance in histopathological images. Caicedo

et al. [13] proposed to detect key points and extract local de-
scriptors with SIFT. These features are then used to obtain a
BoW [27] that were then classified using an SVM with kernel
functions. Similar features have been employed for large-scale
image retrieval [4].

These features are either holistic or local, depicting
histopathological images at different scales.

B. Feature Fusion to Classify Histopathological Images

In addition to using a single type of feature to classify
histopathological images, multiple features can be combined
for more comprehensive information. Feature fusion aims to
combine the strengths of complementary cues such as local and
holistic features. There are several attempts combining such cues
either at the feature or rank level, both for natural images and
medical images. Feature-level fusion usually cannot preserve
the efficiency and scalability. For examples, Tabesh et al. [5]
aggregated color, texture, and morphometric cues at the global
and histological object levels for classification. Specifically, fea-
tures representing different visual cues were combined in a su-
pervised learning framework, i.e., feature selection framework
that reduces the computational cost and improves the perfor-
mance. Since the supervised learning is employed, this fusion
process depends on the specific database, i.e., need to train dif-
ferent parameters for different datasets. Doyle et al. [7] graded
the breast cancer with both graph-based and texture features.
Spectral clustering is employed to reduce the dimensionality of
multiple features that are used for classification. Four features
are investigated, including Voronoi diagram, Delaunay triangu-
lation, minimum spanning tree, and nuclear features, most of
which represent the holistic information of cell layouts, while
complementary features can be heterogeneous.

C. CBIR

Retrieval-based techniques have been widely used in different
domains [28]–[30]. Particularly, CBIR has been investigated for
medical image analysis such as computer-aided diagnosis [8],
[9]. Since our framework fuses heterogeneous features based on
CBIR, we also briefly review some relevant papers, especially
in this area of histopathological image analysis. For example,
Comaniciu et al. [31] proposed a CBIR system to support clin-
ical decisions in pathology. Specifically, a fast color segmenter
is used to extract multiple types of features such as shape, area,
and texture of the nucleus. The classification accuracy was eval-
uated by comparing with human expert annotation on a database
containing 261 digitized specimens. Song et al. [32] designed
a hierarchical spatial matching-based image-retrieval method
using spatial pyramid matching to effectively extract and repre-
sent the spatial context of pathological tissues. Schnorrenberg
et al. [33] extended the biopsy analysis support system to in-
clude indexing and CBIR of biopsy slide images, which was
tested on 57 breast-cancer cases. Zheng et al. [34] designed a
CBIR system to retrieve images and their associated annota-
tions from a networked microscopic pathology image database.
Akakin et al. [35] used the multitiered approach to classify and
retrieve microscopic images, enabling both multiimage query
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Fig. 1. Overview of the proposed framework. Both holistic architecture feature and local appearance feature are extracted and employed for image retrieval. The
retrieval results are fused via the graph-based framework to improve the accuracy. Note that majority voting does not work in this example, since two ranks have
no intersection.

and slide-level image retrieval. It is able to protect the seman-
tic consistency among the retrieved images. Foran et al. [10]
designed a scalable CBIR system for comparative analysis of
tissue microarrays via high-performance computing and grid
technology. Our focus is to improve traditional CBIR methods
by fusing heterogeneous features.

III. METHODOLOGY

A. Overview

Fig. 1 shows the overview of our framework. From detected
cells via an SSAE, we extract both holistic architecture fea-
tures [2] and high-dimensional local appearance features [4],
[36] (i.e., 10 000 dimensions), both of which are used for image
retrieval. To ensure the computational efficiency and scalabil-
ity, the high-dimensional feature is compressed as tens of hash
bits [4], [16]. Combining these complementary features is an
intuitive approach to improve the accuracy. However, directly
combining them at the feature level may not be effective due to
dramatically different representations. An alternative is to fuse
them at the rank level, i.e., retrieved images. The critical issue
is how to measure and compare the quality of ranks on the fly,
since fusion process should favor the rank with higher quality.
As the similarity scores of retrieved results may vary largely
among queries and are not comparable between different ranks,
a reasonable approach is to measure the consistency among the
top candidates. Therefore, for each query image, we construct
a weighted undirected graph from the retrieval results of one
rank, where the retrieval quality or the relevance is modeled by
the weights on the edges [21]. These weights are determined
by the overlap ratio (i.e., Jaccard similarity coefficient) of two
neighborhood image sets. Here, neighborhood set means the
nearest neighbors of the input image, measured by the feature
similarity. Then we fuse multiple graphs to one and perform a
localized PageRank algorithm [37] to rerank the retrieval results
according to their probability distribution. As a result, the fused
retrieval results tend to be consistent among different feature
representations.

B. SSAE for Automated Nuclei Detection

Since both of our holistic and local features are extracted from
detected cells, we briefly introduce our cell detection method.
We employ learning-based methods to locate cells, and manu-
ally fix a small portion of erroneous detections. Specifically, our
detector is based on the SSAE [38]. An autoencoder is a multi-
layer feed-forward neural network trained to represent the input
with backpropagation [39]. By applying backpropagation, the
autoencoder tries to decrease the discrepancy as much as possi-
ble between input and reconstruction by learning a encoder and
a decoder, which yields a set of weights W and biases b. The
cost function of a sparse autoencoder (SAE) comprises three
terms as follows:

LSAE(θ) =
1
N

N∑

k=1

(L(x(k), dθ̂ (eθ̌ (x(k)))))

+ α

n∑

j=1

KL(ρ||ρ̂j ) + β‖W‖2
2 (1)

where the first term is an average sum-of-squares error term
describing the discrepancy between input x(k) and reconstruc-
tion x̂(k) over the entire data X . Encoder eθ̌ (·) maps the input
x ∈ Rdx to the hidden representation h ∈ Rdh , while decoder
dθ̂ (·) maps the resulting hidden representation h back into the
input space x̂. Here, N is the number of entire training patches.
x(k) is the vector of intensity for kth patch. dθ̂ (·) and eθ̌ (·)
are decoder and encoder networks with parameters θ̂ and θ̌,
respectively. The second term is the Kullback–Leibler (KL)
divergence between ρ̂j , the average activation (averaged over
the training set) of the hidden unit j, and desired activations ρ.
The third term is a weight decay term, which tends to decrease
the magnitude of the weight, and helps prevent overfitting.

Our SSAE consists of two basic SAE in which the output of
first layer is wired to the input of the second layer. The SSAE is
trained with nuclei and nonnuclei patches from training set. The
training set includes 14421 nuclei and 28032 nonnuclei patches
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Fig. 2. Procedures of our graph fusion, including graph construction (from
two ranks, represented as blue and red graphs), graph consolidation (purple to
represent nodes appearing in both graphs), and subgraph selection.

(34 × 34 pixels for each patch) that randomly extracted from
histopathological images.

After trained with nuclei and nonnuclei patches, the SSAE is
employed to detect nuclei from histological images. In detec-
tion phase, a sliding window approach is used to select candidate
patches, which is subsequently fed to trained an SSAE model
for classifying the candidate patches being nuclei or nonnuclei
patches. The detector recognizes a well-centered nuclei in its in-
put field and rejects images containing no centered nuclei. Both
architecture feature and local appearance feature are extracted
from detection results.

C. Fusion of Heterogeneous Features

Based on the architecture feature and local appearance fea-
ture, k-nearest neighbors (kNN) algorithm can be naturally used
to find similar cases of the input image. Since each feature can
generate one set of results, i.e., a rank list, we conduct rank-
level fusion for such heterogeneous features. This procedure
includes graph construction, graph consolidation, and subgraph
selection, as shown in Fig. 2.

1) Graph Construction: Given a list of ranked results (i.e.,
retrieved images) by one type of features, such as the archi-
tecture or appearance feature, we assume that the consensus
degree among the top candidates reveals the retrieval quality.
Therefore, we first build a weighted graph using the constraints
derived from the consensus degree, i.e., shared kNN. Setting
the query as the graph centroid, we use its kNN as the first
layer of nodes in the graph, and kNN of kNN as the second
layer. Note that this setting is different from traditional methods
using reciprocal kNN [21], [40], since such information is usu-
ally not available for medical image analysis, i.e., query is not
included in the database. Neighboring nodes are connected by
edges, whose weight can be defined as the ratio of their common
neighbors, i.e., Jaccard similarity, which reflects the confidence
of including the connected nodes into the retrieval results. The

weight between node i and i′ is defined as

w(i, i′) = J(i, i′) =
|Nk (i) ∩ Nk (i′)|
|Nk (i) ∪ Nk (i′)| (2)

where | · | denotes the cardinality, Nk (i) and Nk (i′) include the
images that are the top-k retrieved candidates using i and i′ as
the query, respectively. The range of edge weights is from 0 to
1, with J(i, i′) = 1 implying that these two histopathological
images share exactly the same set of neighbors, in which case
we assume that they are highly likely to be similar.

2) Graph Consolidation: Multiple graphs, denoted as Gm =
(V m ,Em ,wm ), are constructed from the retrieved results of
holistic and local features. They can be fused together in a
natural way, by appending new nodes or consolidating edge
weights of existing nodes in the resulting graph

G = (V,E,w), with V = ∪m V m ,E = ∪m Em ,

and w(i, i′) =
∑

m

wm (i, i′) (3)

where wm (i, i′) = 0 for (i, i′) /∈ Em . The rational of this fusion
process is that though the rank lists or the similarity scores in
different methods or features are not directly comparable, their
Jaccard coefficients are comparable as they reflect the consis-
tency of two nearest neighborhoods. In other words, this measure
of consensus degree does not rely on the similarity scores, so
it can be used and compared for different retrieval results from
holistic and local features, ensuring the generality.

3) Subgraph Selection: After the candidates from both
holistic and local features are fused via the graph consolidation,
we need to rank them as per the relevance and select the most
similar ones. This can be achieved by conducting a link analysis
on the resulting graph, which is treated as a network. This is,
therefore, equivalent to the PageRank problem [37] that discov-
ers the probabilities of the nodes to be visited. Since this network
is built by considering the retrieval relevance, naturally a node
is more important or relevant if it has a higher probability to be
visited. To compute the equilibrium state of the graph, we define
the |V | × |V | transition matrix P as Pii′ = w(i, i′)/deg(i) for
(i, i′) ∈ E, and 0 otherwise, where deg(i) means the degree or
the number of neighbors for a specific node i. This matrix is row
stochastic, and the summation of each row equals to one. In the
intelligent surfer model [41], a “surfer” probabilistically moves
along the edges of G to different nodes, based on the transition
matrix P. We denote pt

i as the probability for the surfer to be at
node i at a time t and pt = (pt

i). The equilibrium state of p is
obtained by the query-dependent PageRank vector as a station-
ary point using the power method, indicating the relevance or
similarity to the query image.

Once p has converged, the histopathological images are
ranked according to their probabilities in p, where a higher
probability reflects a higher relevance to the query in this equi-
librium state of the graph. Using fused results, i.e., a new list
of histopathological images from both features, majority voting
can be employed for cancer differentiation. To summarize, fus-
ing heterogeneous features via graphs can significantly improve
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the performance of each individual feature, without sacrificing
the scalability and generality.

IV. EXPERIMENTS

A. Experimental Setting

Histopathological images of breast tissue for this study were
collected from the IU Health Pathology Lab (IUHPL) according
to the protocol approved by the Institutional Review Board [14].
All the slides were imaged using a ScanScope digitizer
(Aperio, Vista, CA, USA) available in the tissue archival service
at IUHPL. 120 images (around 2250-K pixels for each image)
were gathered from 40 patients, 3 images per patient. 20 of
these patients were labeled as benign and others are actionable,
based on the majority diagnosis of nine board-certified pathol-
ogists. Leave-one-patient-out validation is used to evaluate the
accuracy of classification. All parameters are tuned using cross
validation to optimize the final result. The experiments were
conducted on a 3.40-GHz CPU with 4 cores and 16-G RAM, in
a MATLAB implementation.

B. Evaluation of Individual Features

We employ two types of features, holistic and local, as
the baseline methods for fusion. For holistic feature [2], the
Voronoi diagram, Delaunay triangulation, minimum spanning
tree are constructed and the nuclear density features are com-
puted to model “architecture” of breast tissue, resulting in a
48-dimensional feature vector for each image. For local fea-
ture, 1500–2000 SIFT descriptors [36] are extracted from each
image by detecting key points to describe the cell appearance.
These descriptors are quantized into sets of cluster centers using
BoW [15], in which the feature dimension equals the number of
clusters. Specifically, we quantize them into high-dimensional
feature vectors with length 10 000. For efficiency and scalabil-
ity, we compress the high-dimensional feature into 48 binary
bits with the kernelized supervised hashing (KSH) algorithm
[16]. Note that this binary representation is not compatible with
the holistic feature. We first evaluate the performance of image
retrieval using single feature such as the holistic feature, high-
dimensional local feature and compressed binary feature. kNN
and an SVM are used as the baselines that have been widely
employed for histopathological image analysis [2], [5], [6].

As shown in Fig. 3, both holistic and local features are able to
generate reasonable results, i.e., around 80% accuracy. The only
exception is that kNN fails in handling high-dimensional local
feature, achieving only 74.17% accuracy. After compression
with KSH, the binary codes improve the accuracy to 81.67%.
In addition, using hashing representation also significantly im-
proves the computational efficiency, i.e., thousands times faster
than using original high-dimensional features, ensuring the scal-
ability. Since both features are fairly effective but not perfect,
and they should be complementary as they model different scales
of information, it is natural to combine them for higher accuracy.

C. Evaluation of Feature Fusion

We compare our fusion framework with several classical
methods for fusion, including both feature and rank-level

Fig. 3. Quantitative comparison of the classification accuracy. We compare
the performance of each single feature, and the fusion of both holistic and local
features.

approaches. For feature-level fusion, we normalize and concate-
nate different features into a histogram [19] and classify them
with either kNN or SVM. Since the dimensions of features are
largely different, it is not likely to obtain reasonable results with-
out doing normalization. Therefore, normalization ensures that
each feature contributes “equally” to the concatenated one [42].
For rank-level fusion, we combine different retrieval results via
rank aggregation [20] and classify the query image with major-
ity voting. Rank aggregation has been employed to fuse image
retrieval results from similar types of features [43].

As shown in Fig. 3, concatenation of feature vectors
marginally improve the classification accuracy, i.e., around
1–3% better than the baseline, due to the dramatically different
characteristics of heterogeneous features. On the other hand,
rank aggregation also merely improves the accuracy by 3%,
since there may be no intersection among the top candidates
retrieved by the local and holistic features. Our graph fusion
method determines online which features should play a major
role in the retrieval, in an unsupervised scheme. As a result,
our fusion of heterogeneous features significantly improves the
accuracy by around 10%, i.e., achieving 91.67% overall accu-
racy on this challenging problem. In addition, since this fusion
process is applied on the retrieved results, i.e., a small subset
of the whole dataset, it is very efficient and only takes millisec-
onds, ensuring promising scalability. Fig. 4 shows some retrieval
results using our framework.

D. Discussions

In this section, we discuss the parameters and implementation
issues of our system. Our fusion method only has one important
parameter, i.e., k for constructing the graphs. As shown in Fig. 5,
the accuracy is related to this parameter. For example, choosing
a very small value for k (e.g., 3) indicates strong constraints
of including nodes in the graph. Therefore, the resulting graphs
usually do not have enough nodes. In other words, our graph
fusion and reranking method cannot find enough candidates to
select from. On the other hand, choosing a large value for k
(e.g., 25) looses the constraints, so the graphs may have many
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Fig. 4. Retrieval results using our fusion framework. The first image in each row is the query, and the remaining ones are retrieval results. Top two rows are
actionable cases, and bottom two rows are benign.

Fig. 5. Evaluation of parameter k when constructing the graphs, ranging from
3 to 25.

nodes that are loosely related with the query. This also adversely
affects the accuracy. Therefore, it is desired to choose a proper
value of k. The motivation is to have sufficient and related
candidates (i.e., nodes in graphs) incorporated into each graph,
so our graph fusion algorithm can combine their strengths. Fig. 5
shows that our fusion results are consistently better than each
of the baseline, in fact, it can achieve promising results (i.e.,
more than 90.0%) in a certain range of values, indicating that
our method is not sensitive to small variations of k.

In our experiment, graph-based rank-level fusion significantly
outperforms feature-level fusion and rank aggregation. How-
ever, this is not guaranteed and depends on the properties of fea-
tures. When two types of features are heterogeneous, their his-
tograms may have dramatically different properties, e.g., spar-
sity and dimensions. Our method becomes particularly useful,

as it adaptively decides the quality of retrieval results on the fly.
On the other hand, if these features have similar characteristics,
e.g., features from multiple color spaces, they tend to gener-
ate similar ranks such that majority voting can be effective. In
this case, rank aggregation or concatenation of histograms are
able to achieve accurate results for fusion. We have conducted
an experiment on fusing subtypes of architecture features. In
fact, this 48-dimensional architecture feature is a concatenation
of four holistic features, i.e., Voronoi features, Delaunay fea-
tures, minimum spanning tree features, and Nuclear features,
whose accuracy are 69.2%, 70.8%, 77.5%, and 78.3%, respec-
tively. Both feature-level fusion and our graph fusion achieves
80.0% accuracy, indicating that these four features are not
heterogeneous.

V. CONCLUSION

In this paper, we investigate the fusion of heterogeneous fea-
tures for histopathological image analysis. Specifically, we em-
ploy a graph-based framework to fuse the holistic architecture
feature and the local appearance feature that are generated from
the cell detection results. These features are complementary
but have dramatically different characteristics and representa-
tions, causing difficulties for traditional fusion methods. Our
framework is able to measure online the retrieval quality by the
consistency of the neighborhoods of candidate images. There-
fore, the fused results significantly improve the baseline using
single feature. In the future, we will test our method on larger
dataset (e.g., thousands of images) and employ more features
for fusion. We are also interested in the relevance feedback that
takes domain experts’ feedback to improve the retrieval and
fusion methods.
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