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Abstract. Real-time reconstruction in multi-contrast magnetic reso-
nance imaging (MC-MRI) is very challenging due to the slow scanning
and reconstruction process. In this study, we propose a novel algorithm to
accelerate the MC-MRI reconstruction in the framework of compressed
sensing. The problem is formulated as the minimization of the least
square data fitting with joint total variation (JTV) regularization term.
We first utilized the iterative reweighted least square (IRLS) framework
to reformulate the problem. A joint preconditioner is dexterously de-
signed to efficiently compute the inverse of large transform matrix at each
iteration. We compared our algorithm with eight cutting-edge compres-
sive sensing MRI algorithms on real MC-MRI dataset. Extensive exper-
iments demonstrate that the proposed algorithm can achieve far better
reconstruction performance than all other eight cutting-edge methods.

1 Introduction

The multi-contrast magnetic resonance imaging (MC-MRI) is an important en-
hancement to MRI technology. The MC-MRI better serves the clinic diagnosis
[15], because it generates multiple MR images with different contrast setting
for visualizing the same anatomical cross section. However, the primary techni-
cal difficulty of real-time MC-MRI is the dramatically increased scanning and
processing time for obtaining the examinational results.

The study of compressive sensing (CS) theory [3,7] has shown that, if the
transformed data is sparse, an accurate original could be reconstructed from
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highly under-sampled k-space data, which significantly reduce the amount of re-
quired samples and consequently reduce the time cost. Motivated by the afore-
mentioned CS theory, Lustig et al. proposed their pioneering work for compressed
sensing MRI [10]. However, the SparseMRI is too slow for real-time MRI. After-
wards, the Operator-splitting [11] and the variable splitting [14] methods were
separately proposed to accelerate the MRI reconstruction. Recently, a compos-
ite splitting algorithm [9] has been also proposed. However, these single-contrast
MRI methods have not addressed the joint reconstruction of MC-MRI. An effi-
cient extension for multiple contrast problem is non-trivial, because of the un-
derlying correlations existing between those contrasts.

There has been some attempts to recover all the contrasts jointly. Among cur-
rent algorithms, the FCSA-MT [8] delivers best reconstruction accuracy. Given
the cross-contrast structural sparsity as prior knowledge, the reconstructed im-
ages by FCSA-MT enjoys better accuracy than the individual algorithms and
other joint algorithms, e.g. Bayesian CS [2] and SPGL1 [12]. However, the ef-
ficiency of FCSA-MT is still impeded by the suboptimal convergence rate of
FISTA framework [1]. The IRLS-MIL method [13] solves the regularized least
square problem using the matrix inverse lemma. FIRLS [4,5,6] relaxes the spar-
sity regularization under the IRLS framework and boost the conjugate gradient
descent method (CG) by a special preconditioning. However, it is unclear how
these IRLS based algorithms can be used to efficiently solve the joint MC-MRI
reconstruction with the JTV regularization.

In this paper we propose a novel algorithm for joint reconstruction of MC-
MRI. Our method inherits its exponentially convergence property of IRLS frame-
work. Moreover, we dexterously design a joint “pseudo-diagonal” preconditioner
P for efficiently solving the inverse problem in IRLS at each iteration. The
proposed algorithm is able to efficiently deliver better fidelity due to the uti-
lization of structural sparsity across contrasts and the more accurate approxi-
mation given by P . Extensive experiments have been conducted to compare the
proposed algorithm with eight cutting-edge methods for MC-MRI. The experi-
mental results demonstrate that the proposed algorithm can achieve far better
performance than all other methods.

2 Algorithm

2.1 Problem Formulation

Joint total variation (JTV) regularization well characterizes the correlated light
intensity change in all contrasts. Assuming Gaussian noise, the objective function
for joint MC-MRI reconstruction could be formulated as below:

min
X

T∑

s=1

‖As(X(:, s))− bs‖22 + λ‖X‖JTV , (1)

where As is partial Fourier Transform matrix, X is the R
N×T concatenating

matrix of all contrasts and bs is the noisy observation. We have T contrasts,
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each of which has N = m× n pixels. The JTV regularizer is ‖[D1X, D2X]‖2,1,
where D1 and D2 are R

N×N first-order finite difference matrix. Here, the l2,1
norm is the summation of the l2 norm of each row of the matrix concatenated
by [, ]. To avoid repetition, here we only derive the isotropic form of JTV term.

The problem (1) was solved by a FISTA framework [1]. It is not fast enough
because at each iteration the solution of problem after the primal-dual relaxation
of JTV still takes 1/O(k2) time to converge, where k is the iteration mark [1].
To further accelerate it, we consider to first approximate the JTV term by IRLS.
Applying the Young’s inequality and the Majorization Minimization method [4]:

Q(X,W k) =

T∑

s=1

‖As(X(:, s))− bs‖22 +
λ

2

[ T∑

s=1

X(:, s)T (2)

DT
1 W

kD1X(:, s) +

T∑

s=1

X(:, s)TDT
2 W

kD2X(:, s) + Tr((W k)−1)

]
,

where Tr(�) denotes the trace operator. W k is the weight matrix at the k-th
iteration, and its diagonal elements are:

W k(i) = 1/

√√√√
T∑

s=1

Gk
1(i, s)

2 +Gk
2(i, s)

2 + θ, i = 1, . . . , N, (3)

where Gk
1(i, s) = D1(i, :)X

k(:, s) and Gk
2(i, s) = D2(i, :)X

k(:, s) are the 2-D gra-
dient matrix which are updated along with solution Xk. Small positive constant
θ is for avoiding infinite weight. The original non-smooth problem has been ap-
proximated by the below smooth problem:

X̂k+1 = argmin
X

Q(X,W k), (4)

the solution of which could converge to the minimizer in exponential rate [4].

Algorithm 1. FMCMRI

Input As, bs, X
1, W 1, D1, D2, Err1 ⇐ inf, ε, λ ⇐ 1e−3, k ⇐ 1.

while Errk ≥ ε do
Update W k by Eq(3);
Update Ã by Ãs = AT

s As + λDT
1 W

kD1 + λDT
2 W

kD2, s = 1, . . . , T ;
Update P Eq(7);
while NOT reach the stopping criterion of CG do

Update Xk through solving Eq(6) by CG;
end while
Update Errk+1 =

∑T
s=1 ‖AsX

k(:, s)− bs‖22, k ⇐ k + 1;
end while
Output Xk.
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2.2 Accelerating IRLS Framework

At each iteration, we need to solve problem (4). After eliminating constant terms
and setting the first-order derivative zero, we easily find that the solution could
be obtained by solving following linear system:

ÃX =

⎡

⎢⎢⎣

. . .

Ãs

. . .

⎤

⎥⎥⎦

⎛

⎜⎜⎝

...
X(:, s)

...

⎞

⎟⎟⎠ = b̃, s = 1, . . . , T. (5)

Ã is a block-wise diagonal matrix where Ãs = AT
s As+λDT

1 W
kD1+λDT

2 W
kD2

and b̃ consists of b̃s = AT
s bs. While IRLS based algorithms can converge expo-

nentially fast, the final speed is also determined by the time complexity of each
iteration. For our scenario where N is large, it is impractical to directly inverse
Ã, because the exact inverse of Ã takes O(N3T ) time complexity.

An alternative is the conjugate gradient (CG) descent method. However, the
actual convergence rate of CG is largely determined by the condition number
of Ãs, i.e. k(Ãs) = λmax/λmin, where λ here is the set of eigenvalues of Ãs.
Unfortunately, in our case, Ãs is usually not well-conditioned leading to slow
actual convergence. One way to accelerate CG is to precondition on Ãs and use
CG to solve the below problem for instead:

P−1ÃX = P−1b. (6)

If P = I, the P−1 is trivial, but the CG is not accelerated. For ideal P = Ã,
the P−1 will be difficult, but solving (6) becomes fast because every eigenvalue
of Ã−1Ã is one. A good preconditioner should balance the tradeoff. For solving
all contrasts jointly, we suggest to use the block-wise diagonal preconditioner:

P =

⎡

⎢⎢⎣

. . .

Ps

. . .

⎤

⎥⎥⎦ , s = 1, . . . , T. (7)

Penta-diagonal matrix Ps = αsI + λDT
1 W

kD1 + λDT
2 W

kD2, where αs is the
mean of diagonal elements of AT

s As, and I is an identity matrix of N . This
is motivated by the fact that AT

s As is diagonal dominant and the D(1,2) is
sparse. The complexity of P−1 could be alleviated by incomplete LU decom-
position, P−1

s = L−1U−1. It only takes O(NT ) time to obtain P−1. P−1
s Ãs

with its eigenvalues more closely clustered makes the convergence of CG faster
and accelerates the reconstruction of all contrasts. The preconditioner (7) can
also deliver better reconstructed accuracy than other preconditioners, e.g. Jacobi
preconditioner, because Ps preserves more non-diagonal information making a
more precise approximation of Ãs.
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3 Experiments

3.1 Experimental Setup

Our experiments are conducted on the complex value in-vivo Turbo Spin Echo
(TSE) slices images [2]. These 256 × 256 MR images can cover 24 cm field of
view. Besides, we also conducted experiments on SRI24 dataset. White Gaussian
noise ns of standard deviation σ = 0.01 was added to the measurements bs, where
bs = AsX(:, s) +ns. The regularization weight λ is 1e-3. We computed the SNR
and RMSE as the metrics of fidelity and the CPU time for speed comparison.
Radial and slice shape sample masks were employed separately. To eliminate the
randomness, all experiments were repeated for 100 times before recording. All
experiments were executed on PC equipped with Intel i7-4770 CPU.

Fig. 1. Original images for experiments. Left: SRI24 three contrast MRI; Right: com-
plex valued in-vivo Turbo Spin Echo (TSE) two contrast MRI.

3.2 Numerical Results

We first conducted experiments to compare the proposed algorithm with the
individual algorithms [9,10,11,14], which recover MC-MRI individually. Figure
2(a) shows the comparison results. It is clear to see that our algorithm converged
in few seconds, which was resulted from the exponential convergence rate of
IRLS framework and the linear time complexity brought by the proposed joint
preconditioning.

Moreover, we observe from Figure 2(b) that the slow convergence speed of
FCSA-MT [8] was obviously alleviated by the removal of group wavelet sparsity
term (FISAT-JTV). This is caused by the massy calculation of wavelet sparsity
regularized subproblem in FCSA-MT. Besides, the splitting structure of FCSA-
MT algorithm also constrains the speed of the faster subproblem because it can
only be updated until the other iterative solution has converged, which takes
another 1/O(k2) time complexity [1]. Fortunately, in this image reconstruction
task, the removal of group wavelet sparsity term does not influence too much on
the reconstructed accuracy. This evidence, in return, well supports the formula-
tion of our algorithm Eq(1) with only JTV regularization term.

The benefit of our algorithm in accelerating convergence is more clearly pre-
sented in Table 1 and Figure 3. We compared the proposed algorithm with the
FISTA-JTV, which has the exactly identical formulation as Eq(1). As shown in
Figure 3, FISTA-JTV took at least double time to converge under 35% sample
ratio, and even more under 25%. Different from the nested primal-dual iterative
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Fig. 2. Performance comparison between the proposed and all existing MC-MRI meth-
ods. a: SNR vs Time between the proposed and individual CS-MRI algorithms on
SRI24 data; b: SNR vs Time between the proposed and joint CS-MRI algorithms on
TSE data. Radial mask with 35% sample ratio was employed.
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Fig. 3. Convergence time comparison between the proposed and FISTA-JTV under
ratio radial mask of 25% (left) and 35% (right) sample ratio on TSE data.

solution, our algorithm inherits both exponentially fast convergence rate from
IRLS and the linear time complexity of a well-designed PCG. We also observe
in Figure 3 that the speed advantage the proposed method became even more
significant when fewer sample data are available. To further verify its potential
in reducing the amount of required samples, more comparisons were presented
in Table 1. The proposed algorithm has a more robust convergence speed under
low sample ratio scenario, e.g. 20%, meanwhile the good SNR is still maintained.
For example, the SNR difference between the proposed and SPGL1 increased by
74% when the sample ratio decreased from 30% to 20%.

In Figure 4, we can visually indicate that our algorithm delivered the smallest
reconstructed errors. This is because our formulation Eq(1) with JTV better
characterized the group gradient sparsity across multiple contrasts. Besides, the
exponential convergence rate granted by IRLS guaranteed a more complete con-
vergence to the minimizer after certain number of iterations.
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Fig. 4. Reconstructed absolute error comparison for the joint MC-MRI methods. 1)
Bayesian CS [2]; 2) SPGL1 [12]; 3) FCSA-MT [8]; 4) the proposed. Best view in × 2
PDF.

Table 1. Additional reconstruction results on TSE data with different type of sample
mask under 20% or 30% sample rate. The CPU Time and SNR comparison between
Bayesian CS [2], SPGL1 [12], FCSA-MT [8], FISTA-JTV and the proposed algorithm.

Mask
Sample
Ratio

Metrics
Bayesian

CS
SPGL1

FCSA-
MT

FISTA-
JTV

The Proposed

Radial

30%
RMSE 0.3068 0.1648 0.1267 0.1255 0.1248

SNR (dB) 11.2806 15.0429 17.0382 17.0770 17.0962
Time (s) 1348.59 56.91 44.73 20.18 6.62

20%
RMSE 0.3712 0.2118 0.1534 0.1541 0.1521

SNR (dB) 9.1084 12.9261 15.5363 15.5223 15.5427
Time (s) 3096.49 89.16 90.09 25.67 6.72

Slice

30%
RMSE 0.2913 0.2256 0.2042 0.2052 0.2030

SNR (dB) 10.3723 12.1847 13.0681 13.0414 13.1571
Time (s) 598.51 41.73 58.20 29.01 5.52

20%
RMSE 0.3045 0.2899 0.2283 0.2343 0.2191

SNR (dB) 9.8634 10.3546 12.0297 11.8192 12.0380
Time (s) 2177.41 35.79 51.89 27.52 9.25

4 Conclusion

This paper proposes a novel algorithm to accelerate multi-contrast MRI. Our
proposed algorithm inherits the exponentially fast convergence from the IRLS
and the linear time complexity at each iteration due to the joint pseudo-diagonal
preconditioning on CG. These properties make our algorithm more feasible to
implement real-time MC-MRI due to the fast reconstruction speed and the re-
duced sample requirement.
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