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Abstract. Histopathology is crucial to diagnosis of cancer, yet its interpretation
is tedious and challenging. To facilitate this procedure, content-based image re-
trieval methods have been developed as case-based reasoning tools. Recently,
with the rapid growth of histopathological images, hashing-based retrieval ap-
proaches are gaining popularity due to their exceptional scalability. In this pa-
per, we exploit a joint kernel-based supervised hashing (JKSH) framework for
fusion of complementary features. Specifically, hashing functions are designed
based on linearly combined kernel functions associated with individual features,
and supervised information is incorporated to bridge the semantic gap between
low-level features and high-level diagnosis. An alternating optimization method
is utilized to learn the kernel combination and hashing functions. The obtained
hashing functions compress high-dimensional features into tens of binary bits,
enabling fast retrieval from a large database. Our approach is extensively vali-
dated on thousands of breast-tissue histopathological images by distinguishing
between actionable and benign cases. It achieves 88.1% retrieval precision and
91.2% classification accuracy within 14.0 ms query time, comparing favorably
with traditional methods.

1 Introduction

For years, histopathology has played a key role in the early diagnosis of breast cancer,
which is the second leading cause of cancer-related death among women. Unfortunately,
examination of histopathological images is very tedious and error-prone due to their
large size, inter- and intra-observer variability among pathologists, and several other
factors [11]. To facilitate this procedure, many content-based image retrieval (CBIR)
methods have been proposed as computer-aided diagnosis (CAD) tools [1, 3, 13, 14].
These approaches compare a query histopathological image with previously diagnosed
cases stored in a database, and return the most similar cases along with the likelihood of
abnormality of the query. Compared with classifier-based CAD methods [2, 5], CBIR
approaches could provide more clinical evidence to assist the diagnosis. In addition,
they can also contribute to digital slide archiving, pathologist training, and various
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Fig. 1. Overview of the proposed approach.

other applications. Especially, along with the dramatic increase in digital histopathol-
ogy, hashing-based retrieval methods are drawing more and more attention because of
their remarkable computational efficiency and excellent scalability [13, 14].

In the image retrieval community, it is a common practice to employ multiple fea-
tures to improve performance. Nevertheless, few hashing-based methods have put this
principle into practice. A pioneer work [14] adopts the strategy of affinity aggregation.
In particular, several affinity matrices calculated using individual features are averaged,
and traditional hashing methods are applied to the combined matrix. However, this ap-
proach is not suitable for those features that need different kernel functions during the
hashing process. Besides, it introduces extra parameters (i.e. the weights of all the ma-
trices) which need to be elaborately tuned. Other widely used feature fusion methods in
medical image retrieval include feature concatenation [1] and result-level fusion [12].
The former approach simply concatenates several features to form a new one. Similar
to affinity aggregation, it is not appropriate for intrinsically different features even with
feature normalization, because various features may need different similarity measures
during subsequent feature matching. The latter method first conducts similarity search
using individual features, and then integrates their results. Obviously, this approach
compromises the computational efficiency, since its processing time will be at least the
sum of time required by each feature.

To overcome the above drawbacks, we employ joint kernel-based supervised hashing
(JKSH) [6,8,9] to incorporate feature fusion into the supervised hashing framework, and
apply it to scalable analysis of histopathological images [13, 14]. The overview of our
approach is shown in Fig. 1. Specifically, a joint kernel function is defined as a linear
combination of the kernels for individual features, and a series of hashing functions are
constructed based on this kernel. Diagnostic information of histopathological images in
the database is utilized to learn the weights of individual kernels and the hash functions,
which bridges the semantic gap between low-level features and high-level diagnosis.
With the learned hashing functions, high-dimensional features are compressed into tens
of binary hash bits, enabling efficient search from a large-scale database. At last, a query
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image is classified (as actionable or benign) according to a weighted majority vote of
its retrieved database images [7].

Our approach has many advantages over current methods. First, it could adopt multi-
ple kernel functions as similarity measures for various features, rather than employ the
same kernel. Second, the parameter tuning issue is solved, as all the important parame-
ters are automatically learned. Finally, utilizing the kernel representation, compressing
multiple features into hash code has little computational overhead than using a single
feature.

2 Methodology

In this section, we first formulate the multiple-feature hashing problem as a linear com-
bination of individual kernels, and then explain how to simultaneously learn the kernel
weights and hashing functions. After obtaining the hashing functions, features extracted
from the database histopathological images can be mapped to compact hash codes and
stored in a hash table. Given a query histopathological image, its hash code is com-
puted using the same hashing functions and searched from the hash table to find the
most similar database images, which then vote to determine its diagnosis [7].

Joint Kernel-Based Hashing: Suppose we extract M features from N histopatholog-
ical images. Denote x

(m)
n ∈ R

d(m)

as the m-th feature of the n-th image, which is a

d(m)-dimensional column vector. Then xn =

[(
x
(1)
n

)T

, · · · ,
(
x
(M)
n

)T
]T

∈ R
d is the

concatenation of all features extracted from the n-th image, where d =
∑M

m=1 d
(m).

A hashing method aims at finding P hashing functions {h1, · · · , hP }, where P is the
desired number of hash bits. Each hashing function, hp : R

d �→ {−1, 1}, maps a
concatenated feature vector into a binary bit. The n-th image is represented as yn =
[h1 (xn) , · · · , hP (xn)]

T .
When designing hashing functions, a classic idea is to preserve “local sensitivity”,

i.e., similar feature vectors are compressed into similar hash codes. Unfortunately,
sometimes it is difficult to distinguish between the original features. To solve this
problem, kernel functions are introduced to operate the data in an implicit higher-
dimensional feature space [6]. Given M features, we can choose M kernel functions{
κ(1), · · · , κ(M)

}
, where each kernel κ(m) is associated with an implicit feature map-

ping function ϕ(m), i.e. κ(m)
(
x
(m)
i ,x

(m)
j

)
= ϕ(m)

(
x
(m)
i

)T

ϕ(m)
(
x
(m)
j

)
. Without

ever computing the mapped features ϕ(m)
(
x
(m)
i

)
and ϕ(m)

(
x
(m)
j

)
, κ(m) directly

calculates their inner product. Such “kernel trick” improves computational efficiency
dramatically. Following [3], the joint mapping function ϕ and corresponding kernel κ
are defined as:

ϕ (xn) =

[√
μ(1)ϕ(1)

(
x(1)
n

)T

, · · · ,
√
μ(M)ϕ(M)

(
x(M)
n

)T
]T

, (1)

κ (xi,xj) = ϕ(xi)
T
ϕ (xj) =

∑M

m=1
μ(m)κ(m)

(
x
(m)
i ,x

(m)
j

)
, (2)
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where μ(m) is the weight for the m-th feature. Later we will show how to automati-

cally learn the weight vector µ =
[
μ(1), · · · , μ(M)

]T
. Eq. (2) demonstrates that κ =∑M

m=1 μ
(m)κ(m) is actually a linear combination of individual kernels for each feature.

To reduce computational complexity, R (R � N) landmark points, denoted
as {z1, · · · , zR}, are randomly selected from all the database feature vectors
{x1, · · · ,xN}. Then, for the p-th hashing function hp, its hyperplane vector vp in the
kernel space is represented as a linear combination of projections of landmarks in that
space:

vp =
∑R

r=1
W (r, p)ϕ (zr), p = 1, · · · , P , (3)

where W is a R×P -dimensional matrix, its element W (r, p) denotes the weight of zr
for vp. hp (xn) is defined based on the projection of ϕ (xn) on vp:

hp (xn) = sgn
(
vT
p ϕ (xn) + bp

)
, p = 1, · · · , P , (4)

where bp is the threshold parameter. Denote b = [b1, · · · , bP ]T as the threshold
vector, KR×N = [κ (zr,xn)]R×N as the kernel matrix between R landmarks and
N database features, and KR×N (:, n) as the n-th column of K . Utilizing the fact
κ =

∑M
m=1 μ

(m)κ(m), we can represent the hash code of the n-th image in a kernel
form:

yn = sgn
(
WTKR×N (:, n) + b

)
, n = 1, · · · , N . (5)

W and b determine the hashing functions, and they are learned using supervised infor-
mation along with µ.

Supervised Optimization: In the image retrieval field, “semantic gap”, which refers
to the difference between low-level features and high-level concepts, is a long-standing
problem. Supervised methods, such as kernel-based supervised hashing (KSH) [8], of-
fer a promise to address this issue. Developed from the idea of “local sensitivity”, su-
pervised hashing approaches map semantically similar images to similar hash codes.
To this end, we incorporate diagnostic information into affinity matrix S. S (i, j), rep-
resenting the similarity score between the i-th and the j-th images, is defined as:

S (i, j) =

⎧⎪⎨
⎪⎩

exp
(
− ‖xi−xj‖2

σ2

)
, if xj is among the k nearest neighbors

of xi with the same label
0, otherwise

, (6)

where σ is a scaling parameter estimated from the data. Note that S is a sparse matrix,
i.e., most of its elements are 0.

The objective function of the proposed JKSH is formulated as:

min
W,b,µ

1
2

∑N
i,j=1 S (i, j) ‖yi − yj‖2 + λ ‖V ‖2F = Tr

(
Y LY T

)
+ λ ‖V ‖2F

s.t.
∑N

n=1 yn = 0, 1
N

∑N
n=1 yny

T
n = I, 1Tµ = 1, µ � 0 .

(7)

Here
∑N

i,j=1 S (i, j) ‖yi − yj‖2 guarantees that histopathological images with the same
label and similar features are compressed into similar hash codes, V = [v1, · · · ,vP ]
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is the hyperplane matrix, ‖V ‖2F is a regularized term used to control the smooth-
ness of hashing functions, Y = [y1, · · · ,yN ] includes all the database hash codes,
L = diag (S1) − S is the graph Laplacian matrix, the constraints ensure that the gen-
erated hash codes are balanced and uncorrelated. To solve this NP-hard problem, we
employ spectral relaxation, which ignores the discrete constraint for yn in Eq. (5) and
allows yn = WTKR×N (:, n) + b ∈ R

P .
The above problem, when either (W, b) or µ is fixed, is convex with respect to the

other. Therefore we perform an alternating optimization algorithm, which mainly con-
sists of the following two steps.

Step 1. Optimize (W, b) for given µ. Similar to [6], we can find the optimal W by
solving the following problem using eigen-decomposition:

min
W

Tr
(
WTCW

)
s.t. WTGW = I , (8)

where C = KR×NLKT
R×N + λKR×R, KR×R = [κ (zi, zj)]R×R is the kernel matrix

betweenR landmarks, andG = (1/N)KR×N

(
I − (1/N)11T

)
KT

R×N . b has a close-
form solution depending on W :

b = − 1

N
WTKR×N1 . (9)

Step 2. Optimize µ for given (W, b). The optimal µ can be obtained by solving the
following quadratic programming problem:

min
µ

1

2
µTEµ+ fTµ s.t. 1Tµ = 1, µ � 0 , (10)

where E is defined as E (i, j) = 2Tr

(
WTK

(i)
R×NL

(
K

(j)
R×N

)T

W

)
(i, j =

1, · · · ,M ), f =
[
f (1), · · · , f (M)

]T
, f (m) = λTr

(
WTK

(m)
R×RW

)
, K

(m)
R×N =[

κ(m)
(
z
(m)
r ,x

(m)
n

)]
R×N

is the kernel matrix for the m-th feature between R land-

marks and N database images, and K
(m)
R×R =

[
κ(m)

(
z
(m)
i , z

(m)
j

)]
R×R

is the kernel

matrix for the m-th feature between R landmarks (m = 1, · · · ,M ).
In summary, the optimization approach works as follows. First, it initializes µ =

[1/M, · · · , 1/M ]T . Then, it iteratively updates (W, b) according to step 1 and updates
µ according to step 2 until they converge. In practice, our method usually finds the
optimal (W, b) and µ within a few iterations.

3 Experiments

Experimental Settings: Our experiments are carried out on the breast-tissue micro-
scopic image dataset built in [5,13]. Briefly speaking, this dataset comprises 20 action-
able (atypical ductal hyperplasia, ADH, and ductal carcinoma in situ, DCIS) cases and
20 benign (usual ductal hyperplasia, UDH) cases. 654 and 1723 images, each of which
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Fig. 2. Retrieval precision (left) and classification accuracy (right) at different hash code lengths.

has about 2.25M pixels, are sampled from the slides of these two categories. Four-fold
cross-validation is performed for reliable results. That is, both actionable and benign
cases are divided into four parts, and the proposed approach is evaluated four times.
During each time, images in three parts form a database, and images in the other part
are used as queries. Note that the query and database images are selected from different
cases to avoid positive bias. The average performance from four runs is reported.

The proposed approach employs two texture-related features, namely scale-invariant
feature transform (SIFT) [10] and histogram of oriented gradient (HOG) [4], which
have demonstrated good performance in medical image retrieval and analysis [2, 3, 7,
13, 14]. In particular, scale-invariant keypoints are first detected by finding local ex-
trema in difference-of-Gaussian (DoG) space, then SIFT and HOG features are calcu-
lated around these keypoints. Both features are quantized using bag-of-words (BoW)
method [2, 3] and represented as 2000-dimensional histograms. As for kernel function,
the proposed approach adopts Gaussian radial basis function (RBF) for both SIFT and
HOG. Gaussian RBF is very popular in kernelized learning methods, and has been suc-
cessfully applied to medical image analysis [2].

Five baseline methods are implemented for comparison. The first two methods, fol-
lowing [13], apply traditional KSH [8] on SIFT and HOG BoW respectively. The other
three methods exploit KSH on both features, which are unified through affinity aggrega-
tion [14], feature catenation [1], and result-level fusion [12], respectively. These feature
fusion methods have been widely used in medical image retrieval and demonstrated
good performance.

Results and Analysis: We first evaluate the retrieval precision of all the methods,
which is defined as the percentage of retrieved database images that are relevant to
query image. The top 20 retrieved images are considered for this purpose. To demon-
strate parameter sensitivity, each method uses a series of hash code lengths, ranging
from 8 to 64 bits. The results are summarized in Fig. 2. For all the methods, as the hash
code length increases to 64 bits, the precision scores first improve and then converge.
This observation indicates that hashing-based methods can transform high-dimensional
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Fig. 3. Two query images (left) and their retrieved database images obtained by our approach
(right). Images in the top row are all actionable, and images in the bottom row are all benign.

Table 1. Query time with 64-bit hash code

Method SIFT HOG Affinity Concatenation ResultFusion Proposed

Time (millisecond) 13.2 13.1 14.1 13.8 26.4 14.0

image features to compact yet descriptive image “signatures”. Among all the six ap-
proaches, the two methods utilizing single feature perform worst. As for the fusion
methods, feature concatenation gains marginal improvement over “SIFT + KSH”, while
affinity aggregation and result-level fusion obtain considerable improvement. The pro-
posed approach substantially outperforms all compared methods, and achieves a preci-
sion score of 88.1% when using 64-bit hash code. Two retrieval examples are provided
in Fig. 3 for visual evaluation, which demonstrate that our approach could find visually
and semantically similar database images for queries.

Then, classification accuracy is measured, which refers to the percentage of query
images that are correctly classified. Remember that a query image is classified as ac-
tionable or benign tissue according to a weighted majority vote of its retrieved database
images [7]. The accuracy scores are reported in Fig. 2. Apparently, these scores exhibit
similar intra- and inter-method trends to those of the precision scores. Furthermore, the
accuracy scores are systematically higher than the precision scores, since irrelevant re-
trieved images would not cause a misclassification as long as they remain a minority of
the retrieval set. Once again, our approach considerably surpasses all the baseline meth-
ods. Especially, it achieves a satisfactory classification accuracy of 91.2% at 64-bit hash
code length.

Finally, query time, i.e. the time needed to retrieve and classify a query image, is
investigated when using 64-bit hash code. Here, the time cost of SIFT and HOG BoW
calculation is not taken into account, since it remains fixed as the database expands and
therefore is not the bottleneck for large-scale image analysis. As shown in Table 1, these
hashing-based methods exhibit outstanding computational efficiency. This is attributed
to the compactness of hash codes, as well as adoption of hash table and “kernel trick”.
It is noteworthy that our approach, along with affinity aggregation and feature concate-
nation, has only a small computational overhead compared with methods using a single
feature. As expected, the time cost for result-level fusion is the sum of those for “SIFT
+ KSH” and “HOG + KSH”.
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4 Conclusion

In this paper, we adopt joint kernel-based supervised hashing (JKSH) for fusion of
complementary features. Multiple-feature hashing is transformed to a similarity pre-
serving problem with linearly combined kernel functions, which are corresponding to
the similarity measures for individual features. An alternating optimization algorithm is
performed to learn both the kernel combination and hashing functions efficiently. Supe-
rior to traditional fusion methods, the proposed approach is suitable for heterogeneous
features and doesn’t introduce new parameters. Extensive experiments on breast cancer
histopathological images demonstrate the efficacy of our approach. Future endeavors
will be devoted to improve the performance by choosing better image features and ker-
nel functions. In addition, we plan to extend our approach with online learning so that
it could efficiently update hashing functions as new images are added into the database.
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