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Abstract. Training an effective and scalable system for medical image analysis
usually requires a large amount of labeled data, which incurs a tremendous an-
notation burden for pathologists. Recent progress in active learning can alleviate
this issue, leading to a great reduction on the labeling cost without sacrificing
the predicting accuracy too much. However, most existing active learning meth-
ods disregard the “structured information” that may exist in medical images (e.g.,
data from individual patients), and make a simplifying assumption that unlabeled
data is independently and identically distributed. Both may not be suitable for
real-world medical images. In this paper, we propose a novel batch-mode active
learning method which explores and leverages such structured information in an-
notations of medical images to enforce diversity among the selected data, there-
fore maximizing the information gain. We formulate the active learning problem
as an adaptive submodular function maximization problem subject to a partition
matroid constraint, and further present an efficient greedy algorithm to achieve
a good solution with a theoretically proven bound. We demonstrate the efficacy
of our algorithm on thousands of histopathological images of breast microscopic
tissues.

1 Introduction

Recent development of microscopical acquisition technology enables computerized
analysis of histopathological images [9]. For example, in the context of breast can-
cer diagnosis, plenty of systems have been designed to conduct automatic and ac-
curate analysis of high-resolution images digitized from tissue histopathology slides,
where well-known machine learning and image processing techniques [12,3,4] have
been exploited. Particularly, supervised learning models such as Support Vector Ma-
chines (SVMs) [13] have been extensively employed, because they are able to effec-
tively bridge the so-called “semantic gap” between histopathological images and their
diagnosis information [3,6,9]. To train an accurate prediction model under a supervised
manner, it is usually necessary to require a large amount of labeled data, e.g., manual
annotations from domain experts or pathologists. However, acquiring sufficient high-
quality annotations is a very expensive and tedious process. To alleviate this issue and
reduce the labeling cost, active learning [14] has been suggested to intelligently select a
small yet informative subset of the whole database, which requires only a few labeling
operations from domain experts to build an accurate enough prediction model yet with
a low training cost.
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Active learning has been widely investigated in the machine learning community,
aiming for progress in both theoretical aspects, e.g., sample complexity bounds [1],
and approaching practical applications, e.g., image [10] and text [15] classification and
retrieval (the related work in active learning is briefly described below). However, for
histopathological images, previous active learning methods have two main shortcom-
ings: 1) Almost all of them assume that unlabeled data samples are independently and
identically distributed (I.I.D.), which is not necessarily suitable for histopathological
images. In fact, for each patient there are usually several images available which share
common pathological characteristics, e.g., images from different ROIs. Obviously, there
are considerable correlations among such image samples. 2) Even if the I.I.D. property
holds, previous active learning methods may disregard the structured information of
histopathological images, e.g., patient identity, which is easy to obtain but could be
crucial for active learning to enforce diversity during sample selection.

In this work, we propose a novel batch mode active learning approach which is
specifically designed for histopathological image analysis by leveraging structured in-
formation to enforce diversity during intelligent sample selection. We formulate the
active learning problem (essentially the sample selection problem) as a constrained
submodular optimization problem and present a greedy algorithm to efficiently solve
it. Notably, we provide a theoretical bound characterizing the quality of the submodular
active learning strategy, which guarantees that our proposed greedy algorithm approxi-
mates the optimal batch mode active learning strategy for the adaptive submodular func-
tion maximization problem with a partition matroid constraint. In practice, our active
learning driven histopathological image analysis approach outperforms state-of-the-art
methods to tackle histopathological image analysis. We perform experiments on a large
database of histopathological images with high-dimensional features. The experimental
results demonstrate the efficacy of our approach, which achieves 83% prediction ac-
curacy with merely 100 labeled samples among more than two thousand images (i.e.,
less than 5% training data). This accuracy is 11% higher than passive learning and 6%
higher than state-of-the-art active learning methods.

Related Work in Active Learning. Active learning can be considered as a combi-
natorial optimization problem which is typically difficult to exactly solve, so a variety of
heuristics have been resorted to. For example, a number of active learning algorithms
relax the original combinatorial problem involving discrete constraints to a continu-
ous optimization problem, and then employ regular convex or non-convex optimization
techniques to solve the relaxed problem. These algorithms usually suffer from pro-
hibitively high computational complexities, and the deviation from the solution of the
relaxed problem to that of the original problem remains unknown. In contrast, some
latest work casts active learning problem into a submodular set function maximization
problem which is direct combinatorial optimization. While maximizing a submodular
function appears NP-hard, a landmark result from Nemhauser et al. [5] certifies that a
simple greedy optimization scheme is able to achieve the (1− 1

e )-approximation for the
cardinality constraint and the ( 1

p+1 )-approximation for p matroid constraints, respec-
tively. Built on this theoretic finding, Chen and Krause [2] propose a nearly optimal
batch mode active learning strategy by applying an adaptive submodular optimization
scheme [8]. Motivated by this line of submodular optimization techniques, our active
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learning method firstly explores and leverages structured information of histopatholog-
ical images through imposing a partition matroid constraint on active learning.

2 Approach

2.1 Problem Definition

Given an unlabeled dataset U = {x1, · · · ,xn}, each data sample xi ∈ U carries a
random label variable yi ∈ Y (Y = {1,−1}) in our binary classification task for which
the positive label ‘1’ implies ‘benign’ and the negative label ‘-1’ implies ‘actionable’.
Assume that there exists a joint probability distribution P (yU) of the labels of the sam-
ples in U , where yU = [y1, · · · , yn]� ∈ Yn. Batch mode active learning selects a
small subset of U , queries their labels from experts, and then trains a classifier using
the chosen labeled samples. To be specific to histopathological image analysis, batch
mode active learning works as follows: whenever a batch of k unlabeled images B ⊆ U
(|B| = k) are selected, their associated labels yB ∈ Yk are requested from the diagnosis
of pathologists and acquired simultaneously; the obtained labels are used to select next
batches of images iteratively until the needed classification (i.e., predicting ‘benign’ or
‘actionable’) accuracy is achieved.

2.2 Adaptive Submodular Optimization

Our goal is to learn a classifier h : U → Y from a set H of finite hypotheses. We
write S = {(xi, yi)} ⊆ U × Y to denote the set of observed sample-label pairs. We
define H(S) = {h ∈ H : yi ≡ h(xi), ∀(xi, yi) ∈ S} to denote the reduced hypothesis
space consistent with the observed sample-label pairs in S. We then define and aim to
maximize the objective set function f : 2U×Y → R as

f(S) = |H| − |H(S)|, (1)

where the operator | · | outputs the cardinality of an input set. In this paper, we study
hyperplane hypotheses in the form of h(x) = sgn(w�x) in which the sign function
sgn(x) returns 1 if x > 0 and -1 otherwise. Intuitively, the function f(S) measures the
number of hypotheses eliminated by the observed labeled data in S. As a matter of fact,
f satisfies the following properties:

– f(∅) = 0; (Normalized)
– for any S1 ⊆ S2 ⊆ U × Y , f(S1) ≤ f(S2); (Monotonic)
– for any S1 ⊆ S2 ⊆ U × Y and (x, y) ∈ (U × Y)\S2, we have f(S2 ∪ {(x, y)})−
f(S2) ≤ f(S1 ∪ {(x, y)})− f(S1); (Submodular)

– for an unlabeled sample x and an observed data subset S ⊆ U × Y , define the
conditional expected marginal gain of x with regard to S as

Δf (x | S) =
∑

y∈Y
P (yi = y | S)[f(S ∪ {(x, y)})− f(S)], (2)

and then the function f along with the distribution P (yU ) is called adaptive sub-
modular if Δf (x | S2) ≤ Δf (x | S1) holds for any S1 ⊆ S2 ⊆ U × Y and
P (S2) > 0. (Adaptive Submodular [8])
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To work under the batch mode setting, the BatchGreedy algorithm [2] generalizes
the conditional marginal benefit in Eq. (2) to allow for conditioning on a set of selected
but not yet observed sample-label pairs within the current batch. BatchGreedy greedily
selects the samples within each batch and assembles batches in a sequential manner.
Specifically, BatchGreedy selects the i-th sample in the j-th batch as follows:

x∗ = argmax
x∈U

Δf (x | {x1,j, ...,xi−1,j},S), (3)

where S represents the observed labeled data from all previous j − 1 batches, and
{x1,j, · · · ,xi−1,j} retains the selected i − 1 samples whose labels are not observed
yet within the current j-th batch. This algorithm is theoretically guaranteed to obtain an
approximation to the optimal batch-mode active sampling strategy.

2.3 Modeling the Partition Matroid Constraint

Since images of the same patient are very likely to include large pathological informa-
tion redundancy, we propose to explicitly enforce diversity within the selected images
by imposing an additional partition matroid constraint on the original adaptive submod-
ular function maximization problem in Eq. (3).

A partition matroid constraint is defined as follows:P1,P2, · · · ,Pq are a partitioning
of the set U if U =

⋃
1≤i≤q Pi and P1, · · · ,Pq are disjoint with each other. We require

the currently selected batch to include at most one sample from each subset Pi.
More formally, our proposed constrained problem is defined as follows:

B∗ = argmax
B⊆U

Δf (B | S)
subject to |B| = k, |B ∩ Pi| ≤ 1, k ≤ q, ∀i ∈ {1, ..., q},

(4)

where B∗ is the optimal k-cardinality batch selected from the current unlabeled dataset
U , P1, · · · ,Pq are q disjoint subsets partitioning U , and S is the set composed of the
previously observed labeled data. These disjoint subsets can be obtained through per-
forming clustering according to the structured information of the annotated images.

Within each batch, the i-th sample of the j-th batch is selected as follows

x∗ = argmax
x∈U

Δf (x | {x1,j, ...,xi−1,j},S)
subject to cluster(x) 
= cluster(xk,j), ∀k ∈ {1, · · · , i− 1},

(5)

where cluster(x) is the index of the cluster that x belongs to.
For the sequential version of this problem, Golovin and Krause[7] have proven that

the greedy method can achieve a ( 1
p+1 )-approximation to the optimum when maximiz-

ing f subject to p matroid constraints, which motivates us to generalize this result to
the batch mode setting. We propose a practical batch mode active learning algorithm
BGAL-PMC, as described in Algorithm 1. In what follows, we show that BGAL-PMC
can well approximate the optimal batch selection strategy. Note that H is the hypothesis
set, H(S) is the reduced hypothesis set which is consistent to the observation S, and
|H| is the size of the hypothesis set.
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Algorithm 1. BGAL-PMC (Batch Greedy Active Learning with a Partition Matroid
Constraint)

Input: a set of disjoint clusters P1,P2, ...Pq , previously selected dataset S and their observed
labels yS , unlabeled dataset U , hypothesis set size N , and batch size k.
Ouput: the selected batch B and their labels yB.
Sample a hypothesis set H = {h1, h2, ...hN} using yS ;
initialize B = ∅, D = ∅, and T = ∅;
for i = 1 to k do

for j = 1 to |U| do
score(xj) = Ey∈{−1,1}[|H({(x, y) | x ∈ B ∪ {xj}})|]

end for
while true do

x∗ = argminx∈U\{B∪T } score(x)
ind = cluster(x∗)
if ind /∈ D then

B = B ∪ {x∗}, D = D ∪ {ind}
break

else
T = T ∪ {x∗}

end if
end while

end for
query the labels yB for B.

Theorem 1. Given a monotonic and submodular function f and a label distribution
P such that (f, P ) is adaptive submodular, when maximizing f subject to a partition
matroid constraint, the expected cost of the BGAL-PMC algorithm is at most 2(ln(|H|−
1)− 1) times the expected cost of the optimal batch selection strategy.

The proof of Theorem 1 is provided in the supplemental material. This theorem
guarantees that BGAL-PMC needs at most 2(ln(|H|− 1)− 1) times more batches than
those required by the optimal batch selection strategy. Note that directly searching for
the optimal selection strategy takes exponential time. To sample a finite hypothesis set
H, we employ the hit-and-run sampler [11] to generate a set of linear separators, which
has been used by [2] and proven effective for active learning problems.

3 Experiments

Experimental Settings: Our experiments are conducted on a large database of
histopathological images from breast microscopic tissues [4,17]. This database con-
tains more than two thousand images, gathered from around a hundred patients. Each
image is labeled as benign category (usual ductal hyperplasia (UDH)) or actionable
category (atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS)) by
pathologists, which are development procedures from a normal terminal duct-lobular
unit to an invasive cancer. Classifying these two categories is an important clinical
problem since the therapy planning and management relies on the diagnosis of UDH
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Fig. 1. (a) Learning curves of the proposed BGAL-PMC and other 5 methods on the breast micro-
scopic tissues image dataset. X-axis is the number of selected images while Y-axis is the accuracy
as the number of selected training images increases. BGAL-PMC (the pink curve) outperforms
the other 5 methods significantly; (b) The diversity curves of all 6 methods. X-axis is the num-
ber of selected images while Y-axis is the diversity of the selected set as the number of selected
images increases. Note that the diversity here is defined as the perentage of partitioning clusters
being covered.

and ADH/DCIS. It is also very challenging due to the subtle differences between cate-
gories. High-dimensional (i.e., 10000) texture features are extracted from each image.
We randomly split the dataset into 50% training to actively select candidate images and
50% testing to test the learned classifier. We also ensure that images for a particular
patient are either in the training set or in the testing set. We randomly split 10 times and
the average performance is reported.

Five active learning methods are compared, i.e., Random Selection, Min Margin [15],
Fbatch [10], BMDR [16], and BatchGreedy [2]. Note that the Random Selection is
equivalent to the passive learning setting. In our method, we partitioned the dataset into
20 disjoint subsets using both the structured information and image texture features by
K-means. Since it’s difficult and time-consuming to sample hyperplanes uniformly in
high dimensional space, we follow [2] to reduce the dimension to 100 to sample the
hypothesis set H. For fair comparison, we use SVM classifier for all methods, with the
same parameters tuned via five-fold cross validation. We set batch size at 5 throughout
the experiments. Two positive images and two negative images are randomly selected
for initialization. The size of the hypothesis set is set at 300, which is empirically large
enough in our experiments. All experiments are conducted on a 2.80GHz i7 CPU with
16 cores and 16G RAM in Matlab implementation.

Results: Fig. 1(a) shows the classifier learning curves as selected samples increase.
Not surprisingly, all five active learning methods perform better than random selec-
tion, which manifest the effectiveness of active learning. In particular, the proposed
BGAL-PMC performs significantly better than all other four active learning meth-
ods. Min Margin method as a classical active learning baseline is the second-best in
our experiments. Although Fbatch, BMDR and BatchGreedy perform well in the first
20 selected samples, the improvement of their accuracy is less substantial when more
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Fig. 2. One example batch of selected images using our proposed method. The first 3 are action-
able, and the last 2 are benign. 5 images are selected from distinct clusters.

Table 1. Comparsion of the average time to select a single batch of images for 5 active learning
algorithms (batch size=5)

Methods MinMargin[15] BMDR[16] FBatch[10] BatchGreedy[2] BGAL-PMC
Time (seconds) 3.13 17.63 128.13 1.97 1.98

batches are selected. The reason is that all other methods do not take the information of
clusters into consideration. Therefore, their selected images may include information
redundancy, which downgrades their performances. On the other hand, trivially using
cluster information cannot achieve the same accuracy either. We tested samping from
randomly-chosen distinct clusters, as an alternative baseline. It achieved 77% accuracy
when selecting 100 samples which is better than some baselines, but is still significantly
worse than our proposed method. Leveraging image structured information may be a
general paradigm to boost active learning performance, but our proposed matroid con-
straint is a more effective and theoretical sound method. With less than 5% data labeled,
our method achieves 83% prediction accuracy. This accuracy is at least 6% higher than
all compared methods. In fact, when 80% data is labeled, the prediction accuracy is
87%, which is merely 4% higher than our method but use much more labeled samples
than us. Therefore, this scheme considerably reduces the label effort from pathologists,
without significantly sacrificing the accuracy.

We further investigated the diversity of all methods, as shown in Fig. 1(b). The diver-
sity here is defined as the coverage rate of the clusters. Since we enforce the partition
matroid constraint explicitly, BGAL-PMC covered all the clusters in much fewer iter-
ations than other methods. Fig. 2 is one selected batch using our proposed method, to
show the diversity of our selections visually. We also compared the running time, as
shown in Table 1. In our experiments, BatchGreedy and BGAL-PMC are much more
scalable than other active learning algorithms. BatchGreedy is slightly faster than ours
(1.97s vs. 1.98s), both of which are negligible in the practical use of active learning.

4 Conclusion

In this paper, we proposed a novel batch mode active learning approach which lever-
ages the structured information of annotated histopathological images. We formulated
the batch mode active learning problem as a submodular function maximization prob-
lem with a partition matroid constraint, which prompts us to design an efficient greedy
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algorithm for approximate combinatorial optimization. We further provided a theo-
retic bound characterizing the quality of the solution achieved by our algorithm. We
compared the proposed active learning approach against several state-of-the-art active
learning methods on a large database of histopathological images, and demonstrated the
superiority of our approach in performance. The spirit of our active learning method
capitalizing on submodular optimization is generic, and can thus be applicable to other
problems in medical image analysis. In the future, we will also explore more sophis-
cated ways to extract structured infomation.
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