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Deformable models integrate bottom-up information derived from image appearance cues and top-down
priori knowledge of the shape. They have been widely used with success in medical image analysis. One
limitation of traditional deformable models is that the information extracted from the image data may
contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we
introduce a new family of deformable models that are inspired from the compressed sensing, a technique
for accurate signal reconstruction by harnessing some sparseness priors. In this paper, we employ spar-
sity constraints to handle the outliers or gross errors, and integrate them seamlessly with deformable
models. The proposed new formulation is applied to the analysis of cardiac motion using tagged magnetic
resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the
poor image quality. Our new deformable models track the heart motion robustly, and the resulting
strains are consistent with those calculated from manual labels.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Physics-based deformable models and their variations have
been studied extensively in recent decades and widely used in
computer vision, computer graphics and medical image analysis
(Metaxas, 1992; McInerney and Terzopoulos, 1996; Metaxas,
1996; Nealen et al., 2006b). They are able to solve diverse types
of problems, such as, but not limited to, image segmentation (Kass
et al., 1988), image registration (Rueckert et al., 1999; Shen and
Davatzikos, 2002), shape reconstruction (Terzopoulos et al.,
1988; Metaxas and Terzopoulos, 1993), and motion analysis
(Metaxas and Terzopoulos, 1991; Paragios and Deriche, 2000).
The name ‘‘deformable models’’ is derived from the nonrigid body
mechanics, which describes how elastic objects respond to applied
forces. Starting from an initial shape, the model is usually de-
formed by two types of forces, i.e., internal and external forces.
The external force drives the model to fit the observations, while
the internal force constrains the geometric flexibility of the shape.
For examples, in the image segmentation problem, the external
force computed from the image intensity drives the model to the
estimated boundary, while the internal force keeps the boundary
smooth. In the motion analysis (e.g., cardiac motions (Park et al.,
1996; Haber et al., 2000; Hu et al., 2003; Chen et al., 2008; Wang
and Amini, 2012)) and the shape manipulation problems (Nealen
et al., 2006b), control points are employed as the external force to
drive the model, and the internal force maintains the smoothness
and preserves shape details. The control points are tracked along
a motion sequence, and then an initial model is deformed to fit
the control points in each following frame. This is often measured
by the distances between the control points and the corresponding
points on the initial model. In fact, in the context of motion analy-
sis and shape manipulation, many previous methods (Sorkine
et al., 2004; Zhou et al., 2005; Yan et al., 2007; Wang et al.,
2008a) use Euclidean distance or L2 norm as the distance metric
for penalty functions. This assumes intrinsically that the errors of
the target points follow a Gaussian distribution with small
variances. Nevertheless, this is not always true in practice. Since
the control points are usually from automated detections, they
may contain not only Gaussian noise, but also some gross errors
or outliers due to the erroneous detection. Therefore, the accuracy
of the traditional deformable models depends heavily on the
accuracy of the control point detection.

In this paper, we focus on improving the robustness of
traditional deformable models, particularly for the problems
of cardiac motion analysis. Inspired by the robust recovery power
of the compressed sensing approach (Donoho, 2006; Candes
et al., 2006), we propose a new class of deformable models using
sparse regularization. Recent research in compressed sensing
shows that using an L1 norm can dramatically increase the
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probability of accurate signal recovery, even when there are both
sparse outliers and moderate Gaussian noise (Candes and Tao,
2006). Thus, we design a robust deformable model by integrating
seamlessly an L1 norm regularization with a modified Laplacian
deformable model (Sorkine et al., 2004; Yu et al., 2013). This new
model is able to handle outliers or gross errors. In addition, it is de-
signed as a convex optimization problem, and can be efficiently
solved within a constrained solution space. However, when the
variances of the Gaussian noise are large, solely using the L1 norm
may cause overfitting problems due to its nature of pursuing the
sparse structure (Candes et al., 2005). Therefore, we propose a
deformable model using hybrid norm regularization that is able
to handle both the Gaussian errors and gross errors. We also gen-
eralize these two models in a unified formulation, named as sparse
deformable models.

In the following section, we discuss the relevant work of
deformable models and compressed sensing. Our proposed sparse
deformable models (SDM) are presented in detail in Section 3. In
Section 4, we validate our models on a clinically important and
challenging problem, i.e., the left ventricle (LV) motion analysis
in mouse cardiac tagged MRI. Section 5 presents experimental re-
sults demonstrating the robustness of our models on mouse heart
motion tracking even with inaccurate results of control point
detection. The last section draws conclusions on model advantages,
and discusses directions of future work.
2. Related work

2.1. Deformable models

With the success of active contour models (Kass et al., 1988),
many methods have been proposed to improve deformable mod-
els. Most of the work focuses on either internal force or external
force. In this section, we introduce some relevant papers in these
two aspects.

Internal force usually enforces the smoothness characteristics of
deformable models, such as the local deformation similarity. An
unconstrained deformable model may easily result in unrealistic
shapes due to the weak or misleading image cues. Therefore, the
internal force is critical for the robustness. The global parametric
models (e.g., deformable superquadratics) were proposed to build
models based on a few global shape parameters (Terzopoulos
and Metaxas, 1990; Bardinet et al., 1996). Although these models
reduce the degree of freedom dramatically, they have difficulty
to present the shape details. The local geometry properties can
be used as constraints to solve these problems. For examples,
splines were used on image deformation to constrain the
smoothness of the deformation field (Tustison and Amini, 2006).
Piecewise-smooth finite element model (FEM) was employed to
present the deformable boundary (Duan et al., 2009b; Duan
et al., 2010), which achieved real-time myocardial segmentation
in both ultrasound and MRI data. The Laplacian coordinates (Sorki-
ne et al., 2004) have been also a well-known measurement for the
local similarity. Comparing with spline- and FEM-based methods,
Laplacian coordinates allow more flexible shape representation.
Sorkine et al. (2004) employed it to constrain the smoothness
and local similarity of the 2D mesh deformation in shape editing.
Shen et al. (2011) decomposed the Laplacian coordinates into
components in the perpendicular and tangential directions, to for-
mulate a detail-preserved internal force. In this paper, we adapt
the traditional Laplacian coordinates in a new setting of 3D volu-
metric and meshless deformable models to enforce the smoothness
and local shape similarity.

External force matches the model to the observations derived
from the image appearance. They are usually categorized as
short-range and long-range forces. The short-range forces are
defined based on the local information in a small neighborhood.
For example, in segmentation problems, they drive the contour
to the estimated boundary. The boundary may be defined by the
intensity, gradient change, or high response of boundary detectors
(Kass et al., 1988). In registration problems, the source image is
deformed to match the target image according to the appearance
similarity (Duan et al., 2009a). The pixels are matched based on
textures in their neighborhoods. The long-range forces deform
the model to match pre-calculated landmarks (Terzopoulos and
Metaxas, 1991) or satisfy model priors (Cohen and Cohen, 1993).
Region appearance features have also been used (Zhu and Yuille,
1996; Jehan-Besson et al., 2003; Huang and Metaxas, 2008) to aug-
ment the deformable models by leveraging the image intensity sta-
tistics. They discriminate the inside and outside region based on
their intensities and textures. Recently, dictionary learning is also
used to learn appearance characters (Huang et al., 2013a; Huang
et al., 2013b). Each pixel is classified into different regions based
on their reconstruction residues under different dictionaries. Our
deformable model uses control points as the external force, which
is a natural choice for cardiac motion analysis.
2.2. Robust shape priors

Most deformable models assume that there is no outlier or
gross error on the detected landmarks, while such error are very
common due to the image noise or weak appearance cues. Statisti-
cal shape models, such as active shape models (Cootes et al., 1995)
and their variants, can effectively handle outliers using shape
priors. Some of them detect and eliminate the outliers explicitly
before the deformation. Duta and Sonka (1998) proposed a method
to detect outliers by hypothesis testing based on the point distribu-
tion model. The detected outliers are removed or replaced based on
the mean shape of the model. Prastawa et al. (2004) proposed to
detect the abnormal regions by registering with a standard atlas.
The regions largely different from the normal intensities are deter-
mined as outliers. Lekadir et al. (2007) used a local shape dissimi-
larity measure, which is invariant to scaling, rotation and
translation, to detect the outliers, and then displaced them based
on the local valid points. Other researchers aimed to reduce the
effect of the outliers during the model deformation. Rogers and
Graham (2006) evaluated M-estimator, least median of squares
and random sample consensus (RANSAC) (Fischler and Bolles,
1981) to handle outliers in active shape models. RANSAC showed
the best performance in the quantitative evaluation. Davatzikos
et al. (2003) utilized wavelet transformation to build a hierarchical
shape model to improve the local robustness. The low-frequency
bands carry global shape information, and the high-frequency
bands serve as local smoothness constraints. Besides shape priors,
image atlas-based methods also naturally have the properties of
handling segmentation errors (Shiee et al., 2011). Priors can also
be based on data-specific properties, e.g., the relative positions of
multiple components, which are modeled by formulating the rela-
tion explicitly (Paragios, 2002) or learning shape priors from exam-
ples (Paragios, 2003).

Recently, compressed sensing methods have been intensively
investigated. These methods aim to reconstruct a signal that is
known to be compressible with certain transformation based on
sparse measurements. Such sparse methods have been widely used
in computer vision and image processing communities to deal with
gross errors or outliers. Particularly, the sparse constraints have
been employed to model shape priors effectively (Zhang et al.,
2012a; Zhang et al., 2012b) and register shapes robustly (Hontani
et al., 2012). In their settings, most of the control points generated
from point detectors are roughly accurate, while a small number of
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points may contain large errors. These points are represented as
sparse outliers and optimized with sparsity regularization.

Most above-mentioned methods rely on the training samples,
which are not always available in practice for deformable models.
In addition, they are based on the static images or shapes to form
an over-complete dictionary and assume that the target model
can be sparsely reconstructed by the dictionary. Different from
these above-mentioned methods, we propose to seamlessly inte-
grate sparsity prior with deformable models to handle outliers
adaptively and dynamically for a sequence of images. Therefore,
there is no need for training data.

3. Methodology

Consider a set of points V, where each point has a neighborhood
structure1, and a subset of V as control points Vc that are computed
from the observations (e.g., image information). Denote the homoge-
neous coordinate of the point i as vi ¼ ½xi; yi; zi;1�T and its position
after deformation as v0i ¼ ½x0i; y0i; z0i�

T , where i ¼ 1;2; . . . ; n. Then the
coordinates of all the deformed points are represented as:

V0 ¼ ½v01
Tv02

T � � �v0n
T �

T
: ð1Þ

The goal of our deformable models is to track the motion of the
whole shape, given the position V0c of control points Vc . Instead of
calculate the deformed point positions V0 directly, we optimize the
deformations T for each point. The deformed position v0i then can
be derived by the relation v0i ¼ Tivi. It is easier to incorporate the
shape constraints into the deformations than the point positions.
This will be further discussed in the internal force. The deformation
of each point i is parameterized by an affine 3� 4 transformation
matrix Ti, where the first three columns are linear transformation
and the last column is translation.

In our model, the internal force preserves the local shape struc-
ture by using the Laplacian coordinate, and the external force min-
imizes the difference between the shape and the control points via
our proposed sparse constraints.

3.1. Internal force

Our internal force ensures the local similarity by regularizing
the differences of the transformation matrices between neighbor-
ing points. Instead of measuring the matrix distance directly, we
measure the difference by the deformation they generate. Specifi-
cally, if a point is deformed using the transformation matrices of its
neighboring points, the resulting displacements should be similar.
In other words, for a point i, its displacement after applying its own
transformation matrix Ti should be similar to applying its neigh-
bor’s transformation matrix Tj. Thus, the energy function of the
internal force is:

Eint ¼
X
i2V

X
j2NðiÞ

wijkTivi � Tjvik2
2; ð2Þ

wherek � k2 denotes the entry-wise matrix L2 norm,2 and weight wij

is the strength of connection between points i and j. In the meshless
model, it is defined by a kernel function, such as the polynomial
kernel (Müller et al., 2003):

wðr;hÞ ¼ 315

64ph9
ðh2 � r2Þ

3
if r < h

0 otherwise;

(
ð3Þ
1 Mesh and meshless-based models are the most widely used shape representa-
tions. Our model works for both representations. The neighborhood is defined by the
connectivity for the mesh model, or the distance for the meshless model.

2 The matrix norms in the paper are all entry-wise norms.
where r is the distance between points i and j, and h is the support
of the kernel, which means that the kernel is non-zero only when
r < h. The function only contains the square term of r. Since r is
defined as the square root of

P
r2

k , where rk is the distance in the
kth direction, this kernel eliminates the requirement of square root
calculation.

The unconstrained transformation matrix Ti is able to deform
the local structure arbitrarily. This may produce some unnatural
and unreasonable shapes to minimize the energy. For example, if
all transformation matrices are zero matrices, points will be trans-
formed to the origin. Thus, the whole model degenerates to a single
point and the internal energy is zero. Although this complete
degeneration may not happen in most applications because of
the external force from the control points, the deformable models
with unconstrained transformation will still lose geometry details
in directions with less control points information, e.g., the direction
perpendicular to the surface (Nealen et al., 2006a). To alleviate this
problem, we restrict Ti to translations, rotations and isotropic
scales. Particularly, we disallow the anisotropic scaling, which will
remove local shape details.

The translations are defined explicitly in the last column of Ti,
and rotations and isotropic scales are both represented in the
linear transformation, which also contains other types of transfor-
mation that we do not expect in our model, e.g., anisotropic scales.
Therefore, we define a special type of linear transformation
containing only rotations and isotropic scales. Rotations are repre-
sented by multiplication with an orthogonal matrix, which is
represented as the matrix exponential of a skew-symmetric matrix
expðHÞ. In particular, 3� 3 skew-symmetric matrices emulate a
cross product with a vector, i.e. Hx ¼ h� x. Based on this property,
one can derive the following expansion of the exponential above:

expðHÞ ¼ aI þ bH þ chT h; ð4Þ

where I and H are linear terms, while hT h is quadratic. Adding the
isotropic scale s to the transformation, the class of matrices for
linear part becomes T ¼ s expðHÞ. Here, we keep only the linear
term of the matrices and form the approximately constrained trans-
formation as:

Ti ¼
s �h1 h2 px

h1 s �h3 py

�h2 h3 s pz

0
B@

1
CA: ð5Þ

In this matrix, s is the isotropic scalar, h is the non-zero term of
the skew-symmetric matrix, and p is the translation part. It is a
good linear approximation for rotations with small angles.

Within this setting, we expect to find Ti satisfies Eq. (5), while
minimizing the internal energy. In Eq. (2), Ti only appears in the
structure Tivk, where k ¼ i or in the neighborhood of point i. Ti is
a matrix and vk is a vector in this function. In order to enforce
the constraint, we reformulate it to a function of ti ¼ ðsi;hi;piÞ

T ,
which is the vector of the unknowns in Ti. Thus, we substitute
Tivk with AktT

i , where Ak contains the position of vk. It is defined as:

Ak ¼
vkx 0 vkz �vky 1 0 0
vky �vkz 0 vkx 0 1 0
vkz vky �vkx 0 0 0 1

0
B@

1
CA: ð6Þ

Thus, the internal force is reformed as

Eint ¼
X
i2V

X
j2NðiÞ

wijkAiti � Aitjk2
2: ð7Þ

Since this is a summation of the quadratic forms of the transfor-
mation matrices ti, we can represent the energy function as a
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quadratic form of all the unknown transformations t. In order to
form the internal force, we encode the point position matrix Ai into
matrix Ki as

Ki ¼ Mi � Ai; ð8Þ

where � is the Kronecker product, and Mi is a mi � n node-arc ma-
trix of vi, where mi is the number of its neighbors. For each neighbor
vj, there is one row in Mi, where the ith element is wij and the jth
element is �wij, while the other elements are all zeroes:

Mi ¼

ith column jth column
� � � wij � � � �wij � � �

..

. ..
.

0
BB@

1
CCA; j 2 NðviÞ: ð9Þ

Kit is the difference of the displacements based on different
transformations of the neighborhood of point i. We concatenate
the matrix Ki for all the points to form the matrix

K ¼ KT
1KT

2 � � �K
T
n

h iT
. Thus, the energy function of the internal force

(Eq. (2)) is formulated as:

Eint ¼ kKtk2
2: ð10Þ

This energy function is a quadratic form of all the independent
transformation unknowns. By solving this function, we directly get
the transformation matrices for all the points, which contain only
translation, rotation and isotropic scale. There is no need to regu-
larize each transformation explicitly to the three types above. This
setting of internal force is able to ensure the smoothness of the
whole shape and preserve the local similarity. In addition, this
internal force is intentionally designed as a convex optimization
problem, so it can be coupled seamlessly with our sparsity-based
external forces.
0 1 2 3

0

1

2

3

4

(a) L2 norm
0 1 2 3

0

1

2

3

4

(b) L1 norm

Fig. 1. The toy sample of the deformable model using L2 and L1 norm regulari-
zation. The circles are the observed control points with outliers. We fit a grid to
control points. The stars are the desired result (ground truth).
3.2. External force

Besides the shape constraint from the internal force, the
deformable model also aims to match the observations. For exam-
ple, a point i on the model is expected to fit the position of corre-
sponding control point v0i after deformation ti. In other words,
v0i ¼ Aiti, where Ai is the position of point i defined above. We con-
catenate the point coordinates Ai into an 3n� 7n sparse matrix:

D ¼

A1

A2

. .
.

An

2
66664

3
77775; ð11Þ

where V0 ¼ Dt is the model deformation based on the transforma-
tion parameters t. We use a control point indicator c to select the
rows of D and V0 corresponding to the control points. Thus, this
deformable model is defined as:

arg min
t
fkKtk2

2 þ kkDct� V0ck
2
2g; ð12Þ

where k is the stiffness weight, which controls how much the model
is able to deform to match the control points. Larger k results in a
better fitting, but the deformed shape may not be smooth. The L2
norm is used as a penalty function in this formulation. This is also
known as Laplacian deformable models (LDM). Similar settings
have been used in many applications, such as shape editing (Sorkine
et al., 2004; Sorkine and Alexa, 2007) and cardiac modeling (Wang
et al., 2008b). However, it may not be the most proper metric for
certain problems, especially when there are gross errors or outliers.
3.2.1. Sparsity constraint using L1 norm
Gross errors may easily happen in medical imaging problems,

such as the erroneous detections in a noisy image. The L2 norm
in Eq. (12) follows a Gaussian distribution for residuals. It may
overfit these sparse outliers, and hence adversely affect the defor-
mation accuracy. It is desirable to model such sparse outliers
during the deformation. The L0 norm counts the number of non-
zero elements and can model such sparse errors exactly. Therefore,
we can use it to capture the sparse outliers:

arg min
t
kKtk2

2

s:t:kDct� V0ck0 < k; ð13Þ

where k � k0 is the L0 norm and k is the pre-defined maximum num-
ber of outliers. However, the L0 norm is non-convex, and solving an
L0 norm problem is NP-hard. Although greedy methods (Mallat and
Zhang, 1993; Tropp and Gilbert, 2007) can be employed to solve
such problem, we do not know the sparse number, i.e., the number
of outliers, and different data may have different sparsity numbers.
Therefore, in practice it is hard to use L0 norm as the sparsity con-
straint in deformable models. Recent developments in compressed
sensing (Candes et al., 2006) show that minimizing an L1 norm
problem can produce a nearly identical sparse solution as using
the L0 norm. Thus, we use convex relaxation to define a sparse
deformable model based on the L1 norm as (we use SDM-L1 to
stand for sparse deformable models with L1 norm regularization):

arg min
t

kKtk2
2 þ kkDct� V0ck1

n o
; ð14Þ

where k is a constant and controls how sparse the outliers are.
Different from sparsity number k, this k is more flexible as this is
a soft constraint.

To illustrate intuitively the effectiveness of method, we test it
on a toy example of shape deformation (Fig. 1). The initial model
is a 4� 4 grid with four-direction connection. Four corners are cho-
sen as the control points, and the top-right one is an outlier, as
shown in Fig. 1(a). The deformable model aims to fit these four
points while maintaining the original grid shape. The result using
the L2 norm is adversely affected by the outlier, since the quadratic
form of the energy function results in a large penalty on this out-
lier. We obtain a much more accurate result by using the L1 norm,
since the linear constraint has a higher tolerance for gross errors.

3.2.2. Sparsity constraint using both L1 and L2 norms
Similar sparsity constraints have been successfully applied in

many applications, such as face recognition (Wright et al., 2009),
background subtraction (He et al., 2012), and shape prior modeling
(Zhang et al., 2012a). However, in deformable models, the observa-
tions may still contain Gaussian errors with large variations. Solely
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using the L1 norm may not be able to handle them well. Therefore,
we combine both L1 and L2 norms, which assist our sparse deform-
able models to handle more general cases (we use SDM-L1/L2 to
stand for the sparse deformable model with both L1 and L2 norm
regularization):

arg min
t;e
kKtk2

2 þ k kDct� V0c � ek2
2 þ ckek1

� �n o
; ð15Þ

where e represents the gross errors and is constrained by the L1
norm, and c 2 ½0;1� controls how sparse e is. The new model com-
bines the advantages of both L1 and L2 norms, and is able to handle
both gross errors and traditional Gaussion errors with large varia-
tions. In fact, this model is closely related to the other models by
adjusting the parameters k and c. If c is extremely large, e will be
all zeros. Thus, the model degenerates to a method with only an
L2 norm, as in Eq. (12), and it is sensitive to gross errors. If k is
extremely large and c is small, the deformation errors will be
approximately equal to e. Thus, the model is similar to the one with
only sparse constraints, as in Eq. (14). It will be robust to the outli-
ers, but cannot handle large Gaussian noise. Therefore, Eq. (15) is
actually a general form of these models. In addition, it is also closely
related to Huber norm, which has been used in statistics for robust
estimation. It is defined as:

qðxÞ ¼ x2 jxj 6 c
2cjxj � c2 jxj > c:

(
ð16Þ

Huber norm is similar to the L2 norm when the errors are smal-
ler than c, and similar to the L1 one when the errors are larger than
c. Therefore, it effectively models both the Gaussian noise and the
outliers. Using the notation of Huber norm, SDM-L1/L2 can be
rewritten as:

arg min
t

kKtk2
2 þ kkDct� V0ckHuber

n o
: ð17Þ

Besides handling different types of errors, another benefit of
this deformable model is the convexity and the continuous first-or-
der derivative. Therefore, the above problem can be solved effi-
ciently using our proposed algorithm introduced below.

3.2.3. Optimization framework
Although the above problem can be solved by the standard con-

vex optimization algorithms, such as interior point method (Grant
and Boyd, 2008), we propose an effective optimization algorithm
that fully utilizes the special structure of this problem. We alter-
nately optimize two variables t and e. These two subproblems both
have analytical solutions. They can be solved efficiently in each
iteration. The results converge fast in our experiments. We initial-
ize the gross error e as zero and apply our alternating algorithm to
the problem. In the first step, when e is fixed, the problem is
reduced to the conventional L2 norm regularization:
(a)
Fig. 2. (a) The setting of the MRI images with fitted LV model. (b) Sample tagged SA imag
large displacements.
arg min
t

kKtk2
2 þ kkDct� V0c � ek2

2

n o
: ð18Þ

It can be solved by least square minimization. In the second
step, t is fixed, and the optimization problems for each term ei of
the outlier e are independent:

arg min
ei

ðDctÞi � V0ci � ei
� �2 þ cjeij
n o

; ð19Þ

where ðDctÞi is the ith element of the vector Dct. The minima for the
two parts can be achieved at ðDctÞi � V0ci and 0, respectively. The
minimum of the energy function must lie between them, since both
of them are convex. Therefore, ei has the same sign as ðDctÞi � V0ci.
After determining the sign of ei, the problem reduces to a con-
strained quadratic function of ei, and the solution is:

ei ¼
maxf0; ðDctÞi � V0ci � c=2g if ðDctÞi � V0ci P 0;
minf0; ðDctÞi � V0ci þ c=2g otherwise:

(
ð20Þ

Since there are analytical solutions for both of the sub-steps in
our algorithm, the energy function will monotonically decrease to
a minimum solution. The convexity of the whole problem makes
sure that this is the global solution of the problem.

4. Motion analysis of mouse LV with deformable models

In this section, we apply our proposed deformable models to
solve a clinically important and challenging problem, i.e., mouse
LV motion analysis using tagged MRI (tMRI). Over the past two
decades, clinical experiments utilizing transgenic and knockout
mice have significantly advanced the research on cardiovascular
diseases. In addition, these models have become indispensable
tools to study the cardiovascular diseases in humans as well (Zhou
et al., 2003). For the study of ventricular function in particular,
tMRI offers a powerful non-invasive tool for making measurements
of the beating heart that directly reflect its complex in vivo physi-
ology. It has been widely used for the assessment of human heart
diseases as well as in experimental heart disease models in mice.
Compared to the human heart, the data acquisition from the
mouse heart is more challenging, owing to the inadequate spatial
and temporal resolutions and limited image quality. The mouse
heart is about 1000th the size of a human heart and beats much
faster, at 400–600 beats per minute (bpm), than the human heart,
with 60–80 bpm. Currently available MRI instruments for mouse
imaging operate at a higher magnetic field strength (4.7 T or
above) than clinical MRI scanners, but they are still unable to pro-
vide temporal and spatial resolution in proportion with the mouse
heart rate and size. Consequently, the tagging lines extracted from
the mouse tMRI images contain more outliers than that from hu-
man data, as shown in Fig. 2(b). A compromise is obtained between
tagging spatial and temporal resolution in order to complete the
study in reasonable amount of time. As shown in Fig. 2(a), there
(b)
e with the result of tagging line tracking. The tracking is inaccurate when there are
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are five SA slices, which can only cover the equatorial region of LV.
There are few deformation information in the basal region from the
SA slices. Meanwhile, the distances between the tagging lines are
small in each image. The tagging lines are easily mis-tracked into
adjacent ones due to the fuzzy image, as shown in Fig. 2(b).

Before introducing our framework with sparse deformable
models, we first discuss related work for cardiac motion analysis,
starting from the human data and then the mouse data. In recent
studies, as the increasing of cardiac MRI data, many methods have
been developed to track and measure the cardiac motion (Wang
and Amini, 2012; Tavakoli and Amini, 2013; Tobon-Gomez et al.,
2013). There are two main categories. The methods in the first cat-
egory obtains the deformation field directly from tagged MRI.
HARP (Harmonic Phase) (Osman et al., 2000) analyzed the image
in the frequency domain. The tagging technique gave rise to spec-
tral peaks in k-space. The tagging motions were extracted from the
inverse Fourier transform of a single peak. Other methods use local
sine wave modeling (Arts et al., 2010) or Gabor filter banks (Qian
et al., 2003; Chen et al., 2010) to analyze the image in the fre-
quency domain. These methods cannot handle large tagging move-
ment, and estimate only in-plane motion. Additional information
was needed to reconstruct 3D motion with only sparse tagged
MR images. The second category aims to track the model motion
based on feature extraction. The tagging lines and their intersec-
tions were usually detected first. Then the myocardial motion
was estimated based on their displacements. Young et al. (1995)
used the 2D active contour model to track the tagging lines
semi-automatically. Then, the LV was represented as a volumetric
deformable model, and driven by the displacement of the tag inter-
sections. Chen et al. (2010) employed the Gabor filter banks to de-
tect the local tag intersections, and robust point matching to track
the myocardial motion sparsely. The deformable model was then
refined by meshless deformation, which is initialized by the sparse
tracking results.
Tagged MRI

Cine MRI 2D Contours

Mat
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Fig. 3. The pipeline of our system. Both the tagged and non-tagged MR images are used
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Fig. 4. (a) shows the deformation errors related to the coefficient c of the L1 norm. (b
measured in millimeters). They are compared under different Gaussian noise variances a
the time, while SDM-L1 norm is better when the Gaussian noise intensity is small.
Several methods developed for human data have been applied
to murine cardiac motion analysis. The characterization of the
murine cardiac mechanical function in normal, infarcted, or
genetically engineered mice or rat model subjected to stem cell
intervention were reported in (Liu et al., 2006; Young et al.,
2006; Zhou et al., 2003), and 3D rendering of LV deformation
was attempted. For example, recently Zhong et al. (2008) repre-
sented the 3D myocardial deformation based on the movement
of material points near the sparse SA slices. By decomposing the
heart movement in long-axis (LA) and SA directions, Chuang
et al. (2010) reconstructed the motion of the whole heart based
on the combination of the displacement of intersections in all these
components.

However, all methods mentioned above assume that the tag-
ging lines were labeled manually or tracked correctly. The tracking
error is unavoidable in automatic methods, especially when they
are applied to low quality MR images, such as mouse data. To solve
this problem, we propose a robust motion analysis system from 2D
image processing to 3D motion analysis. The sparse deformable
models are employed to overcome the possible gross errors in
the image-processing step. The system automatically calculates
the model deformation without any user interaction.

Our system consists of four major components: (1) 2D image
segmentation, (2) 3D surface model construction, (3) material
point tracking, and (4) sparse model deformation. Fig. 3 provides
a pipeline of the proposed system. The LV is segmented on both
short and long axis non-tagged MR images with active contour
models. The 3D LV model is initialized from these sparse 2D con-
tours at the end of diastole (Zhang et al., 2009). We register a stan-
dard LV surface model, manually segmented from 3D CT data, to
the sample specified boundary using coherent point drift (CPD)
(Myronenko and Song, 2010). Then a Gabor filter bank (Chen
et al., 2010) has been implemented to generate corresponding
phase maps from low quality tagged MRI images. The 3D control
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Table 1
Quantitative evaluation of deformation errors (unit: mm).

Method Average Min Max Median

LDM 1.036 0.724 1.635 0.927
SDM-L1 2.107 0.437 3.580 2.069
SDM-L1/L2 0.482 0.341 0.719 0.469
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points are generated, based on the tagging lines and the contours
of separate slices. Finally, we generate a dense 3D meshless model
based on the initial surface mesh. This model is driven by the
control points to track the LV movement along a cardiac cycle with
our proposed sparse deformable models, and the motion strains
are calculated locally based on the tracking results. We have intro-
duced the deformation module, which is our major contribution,
and in the following we briefly introduce the model initialization
and strain analysis modules.

Volume Model Initialization: A surface mesh at the initial frame is
needed to build the meshless 3D heart model. Different from the
LDM SDM−L1SDM−L1/L2
0

1

2

3

4

(a) Basal anterior

LDM SDM−L1SDM−L1/L2
0

1

2

3

4

(b) Basal ant. sep.

LDM SDM−L1SDM−L1/L2
0

1

2

3

4

(e) Basal inf. lat.

LDM SDM−L1SDM−L1/L2
0

1

2

3

4

(f) Basal ant. lat.

LDM SDM−L1SDM−L1/L2
0

1

2

3

4

(i) Mid inf. sep.

LDM SDM−L1SDM−L1/L2
0

1

2

3

4

(j) Mid inferior

LDM SDM−L1SDM−L1/L2
0

1

2

3

4

(m) Apical ant.

LDM SDM−L1SDM−L1/L2
0

1

2

3

4

(n) Apical septal

Fig. 5. Box plot of the errors for different deformable models. In each box plot, the centra
whiskers extend to the extreme data points. The unit of Y-axis is millimeter. X-Axis me
3D segmentation methods such as (Zhuang et al., 2010), the
boundary information only distributes sparsely on the given slices
in our data. Thus, we extract a normal heart mesh model
segmented from 3D CT data as the standard heart model, and then
apply CPD (Myronenko and Song, 2010) to fit this mesh model to
the sparse contours. When many LV surface samples are available,
methods based on active shape models, like SPASM (van Assen
et al., 2006), are able to capture more model details. In contract
to statistical shape models, our method generates data specific
LV model based only on a standard LV model. It well handles the
inconsistency among the contours, i.e., the LA and SA contours
are not intersected exactly. The result surface fits all the 2D cues
well, and maintains a reasonable shape. We use this data-specified
surface mesh as the boundary, and generate a meshless model by
evenly interpolating the material points inside it.

Strain Analysis: The strain is a description of the relative
displacement in the body. It is represented as the displacement
between points in the body relative to a reference length (i.e., a
ratio between lengths). It is close related to the gradient of the
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displacement field ru, where ui ¼ v0i � vi is the displacement of
points. Based on the moving least square method, the displace-
ment field for the point i is defined in its neighborhood as:

rujxi
¼ A�1

X
j

ðvj � viÞðuj � uiÞTxij

 !
; ð21Þ

where A ¼
P

jðvj � viÞðvj � viÞTxij is the moment matrix, which is
based solely on the initial model. Then, the Green-Lagrangian strain
tensor e is:

e ¼ 1
2
ðruþruT þruruTÞ: ð22Þ
Ε c
c
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Fig. 6. Comparing the strains generated from different deformable models with the refe
each row represents one type of strain. In each figure, y-axis is the strain and x-axis me
In the strain tensor e, there are only six different terms because
of the symmetry. The diagonal terms are the normal strains on
three perpendicular directions, and the others are the shear strains.
5. Experiments

5.1. Validation on the synthetic data

Our methods are validated on synthetic 3D volumes with pre-
defined deformation. Three methods are compared: (1) Laplacian
deformable models (LDM) (Sorkine et al., 2004; Wang et al.,
2008a), (2) sparse deformable model with L1 norm regularization
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(SDM-L1), and (3) sparse deformable model with both L1 and L2
norm regularization (SDM-L1/L2). First, an LV volume model is
generated, with the internal points evenly distributed on SA and
LA directions. Ten percent of SA slices with equal intervals are cho-
sen as the control points. Then random global transformations are
applied to this model, such as scaling, rotation and twisting. Two
types of errors are also applied to the deformed model to simulate
the noisy tracking results. Gaussian noise is added to all control
points, and a few points are selected randomly and large displace-
ments are applied to simulate gross errors. Based on the displace-
ments of the control points, deformable models are employed to
reconstruct the displacements of the other points. The deformable
models are tested under different parameters and different noise
intensities. In each parameter setting, we randomly generate
1000 samples and calculate the mean and variance of deformation
errors.

We first analyze the deformation errors when changing the
coefficient c, reflecting the balance between the L1 and L2 norms
(Fig. 4(a)). The deformation error is large when c is close to zero,
and reduces dramatically when c is a little larger. Since SDM-L1/
L2 is similar to SDM-L1 when c is small, it indicates that SDM-L1
cannot handle Gaussian error properly. As c becomes even larger,
the mean error increases again. It becomes stable when c is large
enough, which is similar to the result of LDM. The results show that
SDM-L1/L2 outperforms the other models that use only one type of
norm. Theoretically, the model achieves the best result when the
threshold c is similar to the variance of Gaussian noise. However,
it is hard to measure the noise variance exactly in real data. There-
fore, we set it to one tenth of the median of the neighborhood dis-
tances empirically and it shows good results.
Fig. 8. The deformations of the LV on a cardiac cycle are colored by the circumferential s
referred to the web version of this article.)
We also test our sparse deformable model under different noise
intensities. First, we increase the variance of Gaussian noise with
fixed outliers. In Fig. 4(b), SDM-L1 performs the best when the
noise intensity is low. As the variance increases, SDM-L1/L2 out-
performs the others. LDM is always the worst, due to the outliers.
It shows that our model is more stable when handling moderate
Gaussian noise. Then we test the models with different numbers
of outliers. In Fig. 4(c), the errors of all models increase almost lin-
early with the number of outliers. SDM-L1/L2, which is still the
best among them, performs better than SDM-L1 when there are a
few outliers. They achieve similar errors when the outliers are
dominant. Both of the experiments show that SDM-L1/L2 is more
stable under different noisy conditions.
5.2. Motion analysis of mouse LV

We also test our method on mouse myocardial strain analysis.
The strain computation is especially sensitive to tracking outliers.
Even when there are only small amounts of outliers on deforma-
tion, the strains on points near these outliers will be affected
heavily. To obtain the ground truth, we manually label the tagging
lines in each 2D image, and then use the tag motion to drive a 3D
LV volume model based on finite element method (FEM). This ap-
proach is very accurate. However, manual labeling is time-
consuming and tedious, and FEM is not very efficient. In this
experiment, we use this method as reference, and compare our
models using automatic tagging line tracking results that contain
outliers. We compare the LDM, SDM-L1 and SDM-L1/L2. Table 1
shows the deformation errors of different models on 17 datasets.
SDM with the combined norm has smallest average error owing
to its robustness to outlier. Meanwhile, the results of SDM-L1 are
much less stable than other two methods. The reason is perhaps
that there is strong Gaussian noise in real data.

To further analyze the regional LV motion, we divide the LV into
17 segments, based on the standardized myocardial segmentation
of the American Heart Association (Cerqueira et al., 2002). The
heart is first sectioned into apical, mid-cavity, and basal parts
perpendicular to the left ventricular long axis. Each part is further
segmented based on different short-axis directions. We compare
the deformation errors on all the segments. Fig. 5 shows 16 of them
except the apex segment. The results show that SDM-L1/L2 always
has the best accuracy, i.e., small average deformation errors and
standard deviation. In contrast, SDM-L1 has worst accuracy in both
aspects. Comparing among different parts based on the short axis
directions, the lateral parts have relatively larger errors than the
septal parts. This may because that lateral parts have larger move-
ments. Comparing along the long axis direction, the basal part have
relative larger errors in all the methods. The reason is that there is
no short-axis slices in this part. All the point movements are
−0.5
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train. (For interpretation of the references to color in this figure legend, the reader is
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calculated based on the control points from the middle part. The
free ends at the basal boundaries produce more errors than other
parts. The errors are smaller in the middle and apical parts in the
results of LDM and SDM-L1/L2 due to the dense control points.
However, they are still large for SDM-L1 in these parts. This shows
that using L1 norm alone cannot represent the noisy tracking er-
rors well, and L2 norm is necessary in this data.

We also compute the myocardial strains over a cardiac cycle,
which are commonly used to describe the strength of the heart
motion. The strains are decomposed into radial, circumferential,
and longitude directions, and the shear strains among them.
Fig. 6 provides the comparisons of the strains generated with dif-
ferent deformable models on several mouse datasets. The rows
correspond to different types of strains, and the columns corre-
spond to different mice. Each figure contains the strains generated
from different models in a cardiac cycle. The numbers of frames in
the cardiac cycles may be different on each mouse because of the
acquisition procedures. The first column is from a healthy mouse,
and the other two are from mice with myocardial infarction. It is
shown that the strains generated from the healthy mouse are lar-
ger than from the unhealthy ones. For each individual dataset, the
strains generated from the automatically tracked tagging lines are
less stable than that from manually labeled ones, due to the track-
ing errors. The strains based on LDM are relatively smooth, but this
method tends to underestimate the strains. The results from SDM-
L1 have the worst stability because of its nature to pursue the
sparse solution. Since the control points contain both outliers
and strong Gaussian noise, the L1 norm cannot handle Gaussian
noise stably. The results from SDM-L1/L2 best match the reference
strains. This shows that our model performs well in the LV motion
tracking even with inaccurate control points.

The LV strain is estimated on dense sample points. Based on
these motion results, strains at arbitrary positions inside the LV
can be calculated by linear interpolation. In order to analyze the
local heart motion properties, strains at the end of systole are
projected to short-axis and long-axis slices in Fig. 7. We show
the radial, circumferential, and longitudinal strains on the LV in
the MR images. The strains change smoothly in each slice. Gener-
ally, the lateral side has larger strain than the septal side. The rea-
son is that the right ventricle motion restricts the septal side
motion.

We also visualize the strains on the external and internal sur-
faces of the LV. Since the points of the surface mesh are all in the
initial volume model, where the strains are calculated, we use
them as samples and linearly interpolate the strains on the LV sur-
face. The circumferential strains are shown locally on the LV exter-
nal and internal surfaces in Fig. 8. They indicate larger contraction
near the endocardium than the epicardium. The high strain area
starts from the apical endocardium and expands quickly toward
the base, which is similar to human hearts.
6. Conclusions

In this paper, we introduce a group of sparse deformable mod-
els. Benefitted from the sparsity techniques, these deformable
models are able to handle outliers or gross errors. Therefore, they
are robust to deal with noisy images or tracking errors. We have
validated these methods on the synthetic data and the mouse car-
diac motion tracking. Both qualitative and quantitative results
demonstrate that our methods outperform and are more robust
than previous ones. It is also noteworthy that the applications of
our proposed methods are not limited to cardiac motion analysis.
It is flexible enough for many other medical image problems.

In the future, we plan to extend the deformable models by using
structured priors. The LV is conventionally separated into 17
segments. This inspires us to add group constraints to the current
sparse model. The group sparsity and other structure sparsity con-
straints will further improve the robustness of the model. The cur-
rent regularization term is only related to the external force based
on noisy observations. It is also possible to extend the other parts
of the model. The problem for modeling arbitrary internal force is
that the resulting model may not be a convex problem. The tradi-
tional finite difference method can be employed to find a local
minimum, while the performance should then be further analyzed.
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