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Introduction 
Background 

• Segmentation  (finding 2D/3D region-of-interest) is a 
fundamental problem and bottleneck in many areas. 

• We focus on learning-based deformable models with 
shape priors (2D contour or 3D mesh).  
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Introduction 
Background 

• End-to-end, automatic, 
accurate, efficient.  

• Robustness 
– Handle weak or misleading 

appearance cues. 

– Handle diseased cases (e.g., 
with tumor/cancer). 

– Leverage shape priors to 
improve the robustness 
(Active Shape Model, T. Cootes, 
CVIU’95; 3D ASM for cardiac 
segmentation, Y. Zheng, TMI’08) 
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Introduction 
Research Void 

• Limitations of existing shape prior methods: 
– Assume Gaussian errors → Sensitive to outliers 
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Introduction 
Research Void 

• Limitations of existing shape prior methods: 
– Assume Gaussian errors → Sensitive to outliers 

– Assume unimodal distribution of shapes → Cannot 
handle large shape variations, e.g., multimodal 

– Only keep major variation → Lose local shape detail 
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Introduction 
Research Void 

• Handling gross errors or outliers.  
– RANSAC + ASM [M. Rogers, ECCV’02] 
– Robust Point Matching [J. Nahed, MICCAI’06] 

• Handling multimodal distribution of shapes. 
– Mixture of Gaussians [T. F. Cootes, IVC’97] 
– Manifold learning for shape prior [Etyngier, ICCV’07] 
– Patient-specific shape [Y. Zhu, TMI’10] 

• Preserving local shape details. 
– Sparse PCA [K. Sjostrand, TMI’07] 
– Hierarchical ASM [D. Shen, TMI’03] 
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Need to solve all 
three challenges 
simultaneously 

in practice 



Methods 
Shape prior using sparse shape representation 

• Our method is based on two observations: 

– An input shape can be approximately represented by a 
sparse linear combination of training shapes. 

... 

≈ 
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Methods 
Shape prior using sparse shape representation 

• Our method is based on two observations: 

– An input shape can be approximately represented by a 
sparse linear combination of training shapes. 

– The given shape information may contain gross errors, but 
such errors are often sparse. 
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Methods 
Shape prior using sparse shape representation 

• Formulation: 
–   

... 

≈ 
... 

≈ 

Aligned shape data matrix D 
Weight x 

Input y 
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Methods 
Shape prior using sparse shape representation 

• Formulation: 
–   

• Sparse linear combination: 

–   

... 

≈ 
... 

≈ 

Dense x Sparse x 

Number of nonzero 
elements 
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Methods 
Shape prior using sparse shape representation 

• Non-Gaussian errors: 
–   
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Methods 
Shape prior using sparse shape representation 

• Why it works? 

– Robust: Explicitly modeling “e” with L0 norm constraint. 
Thus it can detect gross (sparse) errors, i.e., non-Gaussian 

– General: No assumption of any parametric distribution 
model (e.g., a unimodal distribution assumption in ASM). 
Thus it can model large shape variations. 

– Lossless: It uses all training shapes. Thus it is able to 
recover detail information even if the detail is not 
statistically significant in training data. 
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Applications – Part I  
2D lung localization in X-ray  

(Lung computer-aided diagnosis system, Siemens) 

• Handling gross errors 

Detection        PA               ASM          RASM           NN              TPS          Sparse1     Sparse2 

Sensitivity 62 66 81 81 59 63 87 

Specificity 99 99 99 99 99 98 99 

Dice SC 76 78 88 87 74 71 91 
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Applications – Part I 
2D lung localization in X-ray 

• Multimodal shape distribution 

Detection             PA          ASM/RASM         NN                 TPS             Sparse1        Sparse2 

Sensitivity 50 61 63 75 73 92 

Specificity 99 99 98 99 99 99 

Dice SC 64 72 73 79 79 91 
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Applications – Part I 
2D lung localization in X-ray 

• Recover local detail information 

Detection             PA          ASM/RASM          NN                 TPS            Sparse1        Sparse2 

Sensitivity 93 93 87 97 97 98 

Specificity 99 99 99 98 99 99 

Dice SC 94 95 90 94 96 96 
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Applications – Part I 
2D lung localization in X-ray 

• Sparse shape components 

 

 

 

 

• ASM modes: 
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≈ 

0.5760 

+ + 

0.2156 0.0982 



Applications – Part I 
2D lung localization in X-ray 

• Mean values and standard deviations. ~1,000 cases. 

Left lung 

Right lung 

1)PA, 2)ASM, 3)RASM, 4)NN, 5)TPS, 6)Sparse1, 7)Sparse2 

µ σ 
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Applications – Part II 
3D liver segmentation in low-dose CT 

Procrustes 
analysis Sparse shape Ground truth 

Initialization 

Deformation 
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Same landmarks + different shape priors 

Same deformation module 



Applications – Part II 
3D liver segmentation in low-dose CT  

ASM-type [Zhan’09] Sparse shape Ground truth 

• Shape refinement during segmentation 
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Summary of Robust Segmentation 

• Robustly handle abnormal cases, such as diseased cases 
(liver tumor). Critical to healthcare applications such as 
computational diagnosis systems. 

• Patent with Siemens. Used in several clinical applications. 
Key contribution for our awarded NSF-MRI grant (’12-’16). 

• Relevant publications: 
– First author papers (S. Zhang, Y. Zhan, J. Huang, D. Metaxas): 

• MICCAI 2012 and 2011 (MICCAI Young Scientist Award Finalist) 

• CVPR 2011 

• Medical Image Analysis (Top 25 hottest articles in 2012) 

– Second author paper 
• Medical Physics 2013 (with my co-mentored student, G. Wang) 

• ISBI 2013, oral (with my co-mentored student, Z. Yan) 
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