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Introduction
Background

e Segmentation (finding 2D/3D region-of-interest) is a
fundamental problem and bottleneck in many areas.

* We focus on learning-based deformable models with
shape priors (2D contour or 3D mesh).




Introduction
Background

 End-to-end, automatic,
accurate, efficient.

e Robustness

— Handle weak or misleading
appearance cues.

— Handle diseased cases (e.g.,
with tumor/cancer).

— Leverage|shape priors\to
iImprove the robustness
(Active Shape Model, T. Cootes,

CVIU’95; 3D ASM for cardiac
segmentation, Y. Zheng, TMI’08)
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* Limitations of existing shape prior methods:
— Assume Gaussian errors > Sensitive to outliers
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Introduction
Research Void

Limitations of existing shape prior methods:
— Assume Gaussian errors - Sensitive to outliers

— Assume unimodal distribution of shapes - Cannot
handle large shape variations, e.g., multimodal

— Only keep major variation - Lose local shape detail
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Introduction / Need to solve all )

Research Void three challenges

simultaneously

* Handling gross errors or outliers. . inpractice
— RANSAC + ASM [M. Rogers, ECCV’'02
— Robust Point Matching [J. Nahed, MICCAI'06]

* Handling multimodal distribution of shapes.
— Mixture of Gaussians [T. F. Cootes, IVC'97]
— Manifold learning for shape prior [Etyngier, ICCV’07]
— Patient-specific shape [Y. Zhu, TMI’10]
* Preserving local shape details.
— Sparse PCA [K. Sjostrand, TMI'07]
— Hierarchical ASM [D. Shen, TMI’03]




Methods

Shape prior using sparse shape representation

e Our method is based on two observations:

— An input shape can be approximately represented by a
sparse linear combination of training shapes.
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Methods

Shape prior using sparse shape representation

e Our method is based on two observations:

— An input shape can be approximately represented by a
sparse linear combination of training shapes.

— The given shape information may contain gross errors, but
such errors are often sparse.

SPRdESaacbg subject20landmark.jpg



Methods

Shape prior using sparse shape representation

e Formulation:
— Ming, gy||T(y, 3) — Dz||2

Aligned shape data matrix D
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Methods

Shape prior using sparse shape representation

Number of nonzero
elements

e Formulation:
— Ming, g ||T(y, 8) — Dz||2

e Sparse linear combination:
— Ming sy ||T(y, 8) — Dx||2, s.1.

|z]lo < k1
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Methods

Shape prior using sparse shape representation

e Non-Gaussian errors:
- Mingg .3y | T(y, 3) — Dx —

subjectéélandmark. jpg

|2, 5.t ||x||o < k1,

subjectZ20landmark.jpq

leflo < k2
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Methods

Shape prior using sparse shape representation

* Why it works?

— Robust: Explicitly modeling “e” with LO norm constraint.
Thus it can detect gross (sparse) errors, i.e., non-Gaussian

— General: No assumption of any parametric distribution
model (e.g., a unimodal distribution assumption in ASM).
Thus it can model large shape variations.

— Lossless: It uses all training shapes. Thus it is able to
recover detail information even if the detail is not
statistically significant in training data.




Applications — Part |

2D lung localization in X-ray
(Lung computer-aided diagnosis system, Siemens)

e Handling gross errors

=5
¥

Detection Sparsel Sparse2
Sensitivity 62 66 81 81 59 63 87
Specificity 99 99 99 99 99 98 99

Dice SC 76 78 88 87 74 71 91
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Applications — Part |

2D lung localization in X-ray

e Multimodal shape distribution

J

o
o

Detection PA ASM/RASM NN TPS Sparsel Sparse?2
Sensitivity 50 61 63 75 73 92
Specificity 99 99 98 99 99 99

Dice SC 64 72 73 79 79 91
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Applications — Part |

2D lung localization in X-ray

e Recover local detail information

ey

Sparsel Sparse?2

Detection PA ASM/RASM NN

Sensitivity 93 93 87 97 97 98
Specificity 99 99 99 98 99 99

Dice SC 94 95 90 94 96 96
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Applications — Part |

2D lung localization in X-ray

e Sparse shape components
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Applications — Part |

2D lung localization in X-ray

e Mean values and standard deviations. ~1,000 cases.
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Applications — Part |l

3D liver segmentation in low-dose CT

~N

Same landmarks + different shape priors

Procrustes
analysis Sparse shape Ground truth

/

Initialization

Deformation

Same deformation module }
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Applications — Part I

3D liver segmentation in low-dose CT

e Shape refinement during segmentation

ASM-type [Zhan’09]  Sparse shape Ground truth
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Summary of Robust Segmentation

* Robustly handle abnormal cases, such as diseased cases
(liver tumor). Critical to healthcare applications such as
computational diagnosis systems.

e Patent with Siemens. Used in several clinical applications.
Key contribution for our awarded NSF-MRI grant ("12-'16).

* Relevant publications:

— First author papers (S. Zhang, Y. Zhan, J. Huang, D. Metaxas):
 MICCAI 2012 and 2011 (MICCAI Young Scientist Award Finalist)
* CVPR 2011
* Medical Image Analysis (Top 25 hottest articles in 2012)

— Second author paper
e Medical Physics 2013 (with my co-mentored student, G. Wang)
e ISBI 2013, oral (with my co-mentored student, Z. Yan)
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