
Medical Image Analysis 16 (2012) 265–277
Contents lists available at SciVerse ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier .com/locate /media
Towards robust and effective shape modeling: Sparse shape composition

Shaoting Zhang a,b,⇑, Yiqiang Zhan a, Maneesh Dewan a, Junzhou Huang c, Dimitris N. Metaxas b,
Xiang Sean Zhou a

a CAD R&D, Siemens Healthcare, Malvern, PA, USA
b Department of Computer Science, Rutgers University, Piscataway, NJ, USA
c Department of Computer Science & Engineering, University of Texas at Arlington, TX, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 February 2011
Received in revised form 22 August 2011
Accepted 22 August 2011
Available online 5 September 2011

Keywords:
Shape prior
Medical image segmentation
Sparse learning
Lung localization
Liver segmentation
1361-8415/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.media.2011.08.004

⇑ Corresponding author at: Department of Compute
Piscataway, NJ, USA.

E-mail address: shaoting@cs.rutgers.edu (S. Zhang
Organ shape plays an important role in various clinical practices, e.g., diagnosis, surgical planning and
treatment evaluation. It is usually derived from low level appearance cues in medical images. However,
due to diseases and imaging artifacts, low level appearance cues might be weak or misleading. In this sit-
uation, shape priors become critical to infer and refine the shape derived by image appearances. Effective
modeling of shape priors is challenging because: (1) shape variation is complex and cannot always be
modeled by a parametric probability distribution; (2) a shape instance derived from image appearance
cues (input shape) may have gross errors; and (3) local details of the input shape are difficult to preserve
if they are not statistically significant in the training data. In this paper we propose a novel Sparse Shape
Composition model (SSC) to deal with these three challenges in a unified framework. In our method, a
sparse set of shapes in the shape repository is selected and composed together to infer/refine an input
shape. The a priori information is thus implicitly incorporated on-the-fly. Our model leverages two spar-
sity observations of the input shape instance: (1) the input shape can be approximately represented by a
sparse linear combination of shapes in the shape repository; (2) parts of the input shape may contain
gross errors but such errors are sparse. Our model is formulated as a sparse learning problem. Using
L1 norm relaxation, it can be solved by an efficient expectation–maximization (EM) type of framework.
Our method is extensively validated on two medical applications, 2D lung localization in X-ray images
and 3D liver segmentation in low-dose CT scans. Compared to state-of-the-art methods, our model exhib-
its better performance in both studies.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Shape is a distinctive characteristic of many human organs and
plays a critical role in various medical image analysis tasks. Although
image appearance cues provide low-level evidence to derive organ
shapes, the derived shape instances may be incomplete in the pres-
ence of weak (missing) appearance cues, or incorrect when mislead-
ing appearance cues are present. Fig. 1 shows a 3D image data from
whole body CT with low dose and large slice thickness, which result
in low contrast and fuzzy boundaries between organs. The boundary
information is weak in between the liver and the kidney (Fig. 1, Left).
Furthermore, there is motion artifact induced by breath around the
boundary between the spleen and the lung (Fig. 1, Right). Fig. 2
shows some challenging cases of another imaging modality, chest
X-ray. In the marked regions, lung boundaries become broken due
to the medical instruments. In these scenarios, segmentation meth-
ods solely relying on appearance cue may fail because of the missing
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or ‘‘false’’ boundaries. On the other hand, however, human organs
usually contain strong shape priors. It provides opportunities to
use shape models to infer and refine the organ shape in an optimal
sense based on high-level shape priors. The success of these models
is highly dependent on the way shape priors are modeled and on the
optimization method used. One of the seminal work in this area,
‘‘Snake’’ (Kass et al., 1987), models the shape prior as a general reg-
ularity term in the optimization, which assumes that the shape
should deform like a membrane or a thin plate. Subsequently, more
object-specific shape priors became prevalent, where the shape pri-
ors are learned from a set of training samples, such as Active Shape
Model (ASM) (Cootes et al., 1995) and Level Set representation with
priors (Rousson and Paragios, 2002). Many adaptations of these
algorithms have been proposed over the years and some of them
are successfully applied in tasks of medical image segmentation
(see Section 2 for details). These methods often confront the follow-
ing three challenges. First, shape variations are usually complex and
therefore difficult to model using a parametric probability distribu-
tion. Second, image appearance information can be highly mislead-
ing and non-Gaussian errors frequently appear in the input shape.
Shape models have to be robust to handle these errors. Third, shape
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Fig. 1. Middle: whole body low-dose CT data. Left: zoom in of the liver and lung. In the marked region the boundary between the liver and the kidney can hardly observed.
The appearance cue is weak because of the low contrast around the boundary. Right: zoom in of the spleen and lung. In the marked region, there is artifact induced by breath.
It is part of the lung but not the spleen. Since the image information is misleading here, segmentation methods solely relying on appearance cue may accidentally include this
region as spleen.

Fig. 2. Chest X-ray images with annotated boundaries. The appearance cue is
misleading because of the instruments in the marked regions.
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models should be adaptive in order to preserve local detail informa-
tion in the input shape, provided such details are present in the
training data, even if they are not statistically significant. While sev-
eral methods have been proposed to address one or two of those
challenges, it remains that, to the best of our knowledge, none of
them can tackle all three challenges simultaneously.

In this paper, we propose a novel Sparse Shape Composition
model (SSC) to address the aformentioned challenges in a unified
framework. Given a shape repository consists of a number of anno-
tated shape instances, instead of explicitly learning shape priors
from these shapes offline, we propose to adaptively approximate
the input shape on-the-fly, by a sparse linear combination of a sub-
set of shapes in the shape repository. Hence, the shape prior con-
straint is implicitly applied. Our method is inspired by recently
proposed sparsity theories in the compressive sensing community,
i.e., the problem of computing sparse linear representations with
respect to an overcomplete dictionary of base elements (Candes
and Tao, 2006; Donoho, 2004). It has been successfully applied in
many computer vision applications, such as, but not limited to, face
recognition (Wright et al., 2009), image restoration (Mairal et al.,
2009), background subtraction (Huang et al., 2009) and image
annotation (Zhang et al., 2010). Yet, to our knowledge, such tech-
niques have not been used in the context of shape priors.

There are two ‘‘sparsity’’ observations behind our method. First,
given a large enough training dataset (repository), an instance can
be approximately represented by a sparse linear combination of in-
stances in the shape repository. Similarly, in our application each gi-
ven shape is approximated by a sparse linear combination of
annotated shapes. Without any assumption of a parametric distribu-
tion model (e.g., a unimodal distribution assumption in ASM), it be-
comes general to objects whose shape statistics can be very
complex. Moreover, such a setting is able to recover detail informa-
tion even if the detail of the input shape is only present in a small
proportion of the shape repository and is not statistically significant.
Second, the given shape information may contain gross errors, but
such errors are often very sparse, e.g., there is an object occluded
in the image or a point missing in the input shape. Combining these
two, we formulate the shape prior task as a sparse learning problem,
and efficiently solve it by an expectation–maximization (EM) type of
framework. Furthermore, we explicitly model the nonlinear shape
transformation in the optimization framework without assuming
the misalignment is small, which is different from the sparse learn-
ing method in face recognition (Wright et al., 2009). In our experi-
ments, we validate our method on two applications of medical
image analysis, and the proposed SSC shows improved accuracy
and robustness compared to some widely used approaches.

The main contributions of our work are threefold: (1) SSC is pro-
posed to model shapes and implicitly incorporate the shape prior
constraint effectively. It is based on sparse representations and
our unified framework is able to handle non-Gaussian errors, mul-
timodal distributions of shapes and detail information recovery. (2)
The problem is efficiently solved by an EM type of framework. (3) It
is successfully applied to two medical applications, 2D lung local-
ization from X-ray image and 3D liver segmentation from low-dose
CT. The extensive experiments demonstrate the superior perfor-
mance of our method.

2. Relevant work

As discussed earlier, many approaches have been proposed in
different contexts to incorporate the shape prior constraint. In
the context of medical image analysis, ASM (Cootes et al., 1995)
and its variations (Heimann and Meinzer, 2009) are probably the
most widely used approaches. Many methods have been proposed
to improve the shape prior module of ASM. They mainly focus on
three aspects:

Modeling complex shape variations: A significant effort has been
put on handling multimodal distribution of shapes, which cannot
be represented by their mean shape and variations. A classical
solution is to use a mixture of Gaussians to represent shape varia-
tion (Cootes and Taylor, 1997). Manifold learning techniques
(Etyngier et al., 2007) can also be used to learn a non-linear shape



S. Zhang et al. / Medical Image Analysis 16 (2012) 265–277 267
prior to alleviate this problem. For example, Zhang et al. (2011b)
employed manifold learning method to overcome the limitation
of ASM on statistical constraint. However, it is still possible that
shape variation is too complex to model with a parametric proba-
bility distribution. Therefore, some researches proposed to decom-
pose the shape space into multiple sub-spaces. Representative
studies include patient-specific shape statistics (Shi et al., 2008;
Yan and Kruecker, 2010) or subject-specific dynamical model
(Zhu et al., 2008a; Zhu et al., 2008b; Zhu et al., 2009; Zhu et al.,
2010) to constrain the deformable contours. Since shape distribu-
tions in these sub-spaces are often more compact, a particular
shape might be better approximated by mean shape and its varia-
tions in a sub-space. It is also worth mentioning that there are
some successful work in the face alignment field that attacks sim-
ilar problems, such as the multi-level generative model (Gu and
Kanade, 2008) and subspace constrained mean-shift (Saragih
et al., 2009). Shape inference is also a potential solution. It con-
structs a surface from a set of 3D points. In (Georgescu et al.,
2005), to infer the shape, a nearest-neighbor approach is used by
finding the closest instance in a database, and the database is based
on the expert’s structure annotations.

Handling non-Gaussian errors: A large number of proposed mod-
ifications on the original ASM algorithm tries to improve the robust-
ness against outliers (erroneous landmarks/boundaries). Duta and
Sonka (1998) propose detecting and correcting outliers by using
the variance information from the PDM. If a point is considered an
outlier, it is corrected based on the position of its neighbors. Lekadir
et al. (2007) employ a shape metric based on the ratio of landmark
distances to detect outliers. Other methods try to decrease outliers’
influence using the weighting of residuals. Rogers and Graham
(2002) evaluate the use of M-estimators, image match and random
sample consensus (RANSAC) (Fischler and Bolles, 1981) for this pur-
pose. In a concluding evaluation, RANSAC was the most effective of
these three methods. Nahed et al. (2006) proposed to use a robust
point matching algorithm (Chui and Rangarajan, 2003) which re-
jects outliers and finds the best-fitting model. Missing landmarks/
boundaries is a special case of outliers. Yan et al. (2010) tried to
use partial ASM to address this problem of missing boundary in im-
age segmentation.

Preserving local detail information: Another difficulty is to pre-
serve local details of the input shape when such details are also
present in the training data but not statistically significant. PCA
performs eigen-analysis and extracts eigenvectors with the largest
eigenvalues. The discarded eigenvectors are statistically insignifi-
cant, but they may contain important local details. Some relevant
work can alleviate this problem. Sparse PCA (Sjostrand et al.,
2007) obtains sparser modes and produces near-orthogonal com-
ponents. Thus each mode only affects locally clustered landmarks
and captures more detail information. Some other methods divide
the shape model into several independently modeled parts, such as
the hierarchical approach (Davatzikos et al., 2003). Since the smal-
ler parts exhibit less variation, they can be captured with fewer
training samples than the variations for the full shape.

However, most discussed methods focus on solving one or two
limitations. It is not trivial to handle all of them simultaneously. In
our work, we address these challenges in a unified framework as
outlined in the next sections.

3. Sparse learning based shape prior modeling

3.1. Problem formulation

In this study, we aims to model the shape of an object using a
set of existing training shape instances.

Notations and basic framework: Explicit parametric shape repre-
sentation is employed to model a shape instance, i.e., a curve (2D) or
a triangular mesh (3D) consisting of a set of vertices. To describe the
ith shape in the training data, the coordinates of all its vertices are
concatenated into a vector di 2 Rn, where n is the product of the
number of vertices in each shape by the dimension. Thus the training
repository can be represented as a matrix D ¼ ½d1; d2; . . . ; dk� 2 Rn�k,
where k is the number of shapes. In our framework, all di,
i = 1,2,3, . . . ,k are pre-aligned using generalized Procrustes analysis
(Goodall, 1991). y 2 Rn is the vector of a newly-input shape which
needs to be constrained or refined. Our basic framework assumes
that after proper alignment, any input shape y can be approximately
represented as a weighted linear combination of existing data di,
i = 1,2,3, . . . ,k, and the parts which cannot be approximated are
noises. We denote x ¼ ½x1; x2; . . . ; xk�T 2 Rk as the coefficients or
weights. Thus the value of x for the linear combination is found by
minimizing the following loss function:

arg min
x;b

kTðy;bÞ � Dxk2
2; ð1Þ

where T(y,b) is a global transformation operator with parameter b.
It aligns the input shape y to the mean shape of existing data D. x
and b are computed by solving (1). Thus the input shape y is con-
strained or refined as Dx and transformed back by the inverse of
the transformation matrix using parameter b.

Sparse linear combination: The limitations of (1) are twofold.
First the data matrix D may be overcomplete (k > n) when the
number of shapes is larger than the length of di. Thus the system
may not have a unique solution. More constraints of the coefficient
x are needed. Second, the input shape, including the noises, may be
perfectly represented if any linear combination can be used. A
more appropriate assumption is that the input shape can be
approximately represented by a sparse linear combination of exist-
ing data. This way, the problem is reformulated as:

arg min
x;b

kTðy;bÞ � Dxk2
2; ð2Þ

s:t: kxk0 6 k1

where k � k0 is the L0 norm counting the nonzero entries of a vector,
k1 is the pre-defined sparsity number. Such formulation ensures that
the number of nonzero elements in x is smaller than k1. The value of
k1 depends on specific applications, and is discussed in Section 5.

Non-Gaussian errors: The formulation (2) works well for many
scenarios. However, there is still one limitation in (2). Since the
loss function is based on L2 norm, it assumes that the error model
follows a Gaussian distribution. Thus it is sensitive to large noises
or gross errors of the input shape, caused by image occlusion or
points missing. Such problem happens frequently in many applica-
tions. In these cases, some errors can be very large, but they are rel-
atively sparse compared to the whole data. To alleviate this
problem, we explicitly model the error as a sparse vector e 2 Rn

by reformulating the problem as:

arg min
x;e;b

kTðy;bÞ � Dx� ek2
2; ð3Þ

s:t: kxk0 6 k1; kek0 6 k2

where k2 is the sparsity number of e. When solving (3), e captures
sparse but large errors which are caused by occlusion or point miss-
ing. When there is no such error, the L2 norm loss function can deal
with it well and e will be all zeros. Thus e is a good supplement
which specifically handles non-Gaussian and sparse errors. Note
that unlike the formulation in the robust face recognition (Wright
et al., 2009), we do not assume that the misalignment is small
and thus explicitly model the transformation with parameter b in
(3).

Convex relaxation: The constraints in (3) are not directly tracta-
ble because of the nonconvexity of L0 norm. Greedy algorithms can
be applied to this NP-hard L0 norm minimization problem, but



268 S. Zhang et al. / Medical Image Analysis 16 (2012) 265–277
there is no guarantee to capture the global minima. In the general
case, no known procedure can correctly find the sparsest solution
more efficiently than exhausting all subsets of the entries for x
and e. Furthermore, in practice the sparsity numbers k1 and k2

may change for different data in the same application. For example,
some data have errors while others do not. Fortunately, recent
developments in sparse representation provide a theorem to effi-
ciently solve this kind of problems through L1 norm relaxation
(Starck et al., 2004). Thus (2) is reformulated as:

arg min
x;b

kTðy; bÞ � Dxk2
2 þ k1kxk1; ð4Þ

which is denoted as SSC (4), and is evaluated in the experiments
section. Similarly, (3) is reformulated as:

arg min
x;e;b

kTðy; bÞ � Dx� ek2
2 þ k1kxk1 þ k2kek1; ð5Þ

where k1 and k2 control how sparse x and e are, respectively. After
relaxation, k1kxk1 + k2kek1 is non-smooth but continuous and con-
vex. (5) is our objective function of SSC (Zhang et al., 2011a). The
deviation from (3)–(5) relaxes the absolute sparseness constraints
of the objective function (L0 norm to L1 norm). From the shape
modeling perspective, we might use more shape instances for shape
composition by optimizing (5). However, since this deviation con-
verts a NP hard problem to a continuous and convex optimization
problem which can be solved efficiently, it paves the way for a fea-
sible shape composition procedure as described in Section 3.2.

Although our focus is on the shape prior modeling instead of
sparse learning methods, it is still worth mentioning that many
other methods can also achieve sparsity, such as Bayesian variable
selection (Dellaportas et al., 2002; Kuo and Mallick, 1998; George
and McCulloch, 1993). In our model, we choose L1 norm based
sparse representation because it is a convex optimization problem,
which can be effectively solved by many convex techniques and
solvers. Furthermore, Donoho (2004) provides theoretical proofs
that the L1 relaxation can preserve the sparsity property of L0
norm constraint.

Connections to other methods: It is interesting to look into (5) by
adjusting k1 and k2 into some extreme values.

� If k2 is extremely large, e will be all zeros. Thus SSC is similar to
methods which do not model non-Gaussian errors.
� If both k1 and k2 are large enough, e will be all zeros and x may

have only one nonzero element. Thus SSC becomes the nearest
neighbor method.
� If k2 is extremely large and k1 is small, a dense linear combina-

tion of shapes is used, which is able to perfectly approximate
the transformed input shape. Thus SSC degenerates to the Pro-
crustes analysis.

The insight of (5) indeed reveals the connections of our SSC with
some other popular methods. Those methods can be regarded as
special cases of SSC. In other words, SSC provides a unified frame-
work to deal with different challenges of shape prior modeling
simultaneously. SSC can also provide flexibility to meet the require-
ments of different applications by adjusting the sparsity of x and e.

Parameter settings: Eq. (5) has two user tunable parameters k1

and k2, which are usually are crucial to the performance and con-
vergence. From a practical point of view, it is desirable that the
parameters are easy to tune and not sensitive to different data in
one application. If these parameters have physical meanings, it is
straightforward to adjust them. Fortunately, the parameters of
our algorithm also have such a property. k1 controls the sparsity
of x. The length of vector x is equal to the number of shapes in
the shape repository. It is usually larger than 100. To generate a
sparse coefficient x, a large k1 is necessary. k2 controls the sparsity
of e. The length of vector e is equal to the number of vertices (mul-
tiplied by the dimension), which ranges from around 20 to 2000. e
should not be too sparse, otherwise it cannot capture any errors.
Thus k2 should be relatively small. Both parameters are straightfor-
ward to tune given their meanings. Furthermore, the experiments
in Section 5 show that the same group of parameters works well
for all data in one application.

3.2. Optimization framework

To solve (5), we need to simultaneously recover the alignment
parameter b and error e. It is a typical Chicken-and-Egg problem.
Furthermore, to efficiently optimize (5), we need to deal with the
nonlinearity of T(y,b) if the transformation is rigid or a similarity.
A notable approach is to use iterative linearization and optimize
all variables simultaneously, which was proposed and successfully
applied in image alignment (Peng et al., 2010). However, this algo-
rithm assumes that the initial misalignment is not too large, which
may not be held in our problem. Furthermore, it focuses on rigid
transformation in 2D images, while we deal with nonrigid transfor-
mation in arbitrary dimensions for shapes. The efficiency of the
optimization framework is also important.

Our solution is to use EM types of algorithms (or alternating
minimization). (5) is divided into two sub-problems: (1) estimat-
ing b and computing T(y,b), (2) efficiently minimizing this simpli-
fied linear inverse problem. In the ‘‘E’’ step, b is estimated using
Procrustes analysis, which aligns the shape y to the mean shape.
Then vector y0 = T(y,b) is obtained. The initial value of beta is ob-
tained by registering the average shape of the database to the sub-
ject space. In the ‘‘M’’ step, the following simplified problem is
minimized:

arg min
x;e

ky0 � Dx� ek2
2 þ k1kxk1 þ k2kek1; ð6Þ

which is now a linear inverse problem. It is then efficiently solved
using the Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
(Beck and Teboulle, 2009). Two procedures are iteratively employed
to obtain x, e and b. Then Dx is computed as the approximated shape
and is transformed to its original coordinate system. The framework
is detailed in Table 1. Note that theocratically this EM algorithm
might lead to local minima. However, in our extensive experiments
(Section 5.1), we did not observe this situation yet. We also observe
that our results are quite stable with respect to the local random
perturbations of subject space (e.g., auto-detected landmarks). This
proves that slight differences of beta do not affect the final results.

4. Shape inference and refinement for organ localization and
segmentation

Due to imaging artifacts and diseases, appearance cues in med-
ical images might be unreliable or misleading. On the other hand,
however, strong shape priors of human anatomy provide opportu-
nities to shape prior-based methods. To evaluate the capability of
the proposed shape prior modeling, we apply it to two tasks: (1)
organ localization using shape inference and landmark detection,
and (2) segmentation using shape refinement and deformable
model. The first task organ localization can be used as an initializa-
tion step of the segmentation framework (Fig. 3).

Organ localization based on landmark detection and shape infer-
ence: The positions and orientations of the same organ vary signif-
icantly in medical image data. Quickly and accurately locating the
organ is crucial to image segmentation. One approach is to find a
similarity transformation matrix, and then use this matrix to align
a mean shape to the organ (Zheng et al., 2008). Generally it
achieves good performance. However, similarity transform only
has nine degrees of freedom. Thus it may not be able to represent



Table 1
Optimization framework to solve (5).

Algorithm 1. Optimization

Input: Data matrix of shape repository D 2 Rn�k , where k is the number of shapes, and each column is a training shape di 2 Rn

repeat
‘‘E’’ step: b is estimated using Procrustes analysis, which is a similarity transformation and aligns the input shape y to the mean shape of D. y0 = T(y,b)
‘‘M’’ step: (6) is efficiently minimized use FISTA Beck and Teboulle, 2009. x and e are computed

until halting criterion true
Compute yrefined = Dx
Compute y0refined ¼ Tðyrefined ; cÞ, where c is the parameter corresponding to the inverse of the transformation matrix using b

Output: y0refined
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some specific data or shapes by transforming a mean shape (in Sec-
tion 5.1).

To solve this problem, we propose a landmark detection and
shape inference based localization method. A learning-based
method is employed for landmark detection (Zhan et al., 2008). De-
tected landmarks can be very sparse compared to the whole shape.
Furthermore, there may be gross errors or point missing from the
detection results. We use SSC to infer a shape based on these de-
tected landmarks. Compared to solely using similarity transforma-
tion to transform the mean shape, our approach has more degrees
of freedom and is able to better fit to the actual shape in the image.

In this framework, we assume that ground truths for shapes are
available from training data, and the one-to-one correspondence is
already obtained. We then automatically or manually choose some
specific points (e.g., corner points or high curvature points) as
landmarks on the shape of each data. Such training landmarks
and shapes are fed into data matrices denoted as DL and DS, respec-
tively. Given a testing image, its landmarks yL are detected using a
learning based method (Zhan et al., 2008). Then x and b is com-
puted by optimizing (5) with DL and yL. Finally DSx is computed
as the refined shape and transformed back to its coordinate system
using inverse of the transformation matrix with parameter b. Such
localization can also be used as the initialization of many segmen-
tation algorithms.

In Section 5.1, this framework is employed to locate 2D lung
from X-ray image. In Section 5.2, this framework is used to initial-
ize the 3D deformable model.

Organ segmentation based on deformable model and shape refine-
ment: Curve or surface based deformable models have been widely
used for organ segmentation (Kass et al., 1987; Cootes et al., 1995;
Xu and Prince, 1998; Huang and Metaxas, 2008; Shen and
Davatzikos, 2000; Li et al., 2005; Zhuang et al., 2010). Many deform-
able models consist of two iterative steps, local deformation based
on low level image information and global shape refinements based
on high-level shape priors. For those applications that have noisy im-
age information, high level shape information becomes especially
critical. Our sparse shape prior modeling can be used for shape
refinement method as a regularization step during deformation. An
1. Landmark
Detection

2. Shape Inference

3. Deformation 4. Shape 
Refinement

Image 
Data

Initialization
(Localization)

Result 
(mesh)

Fig. 3. The flowchart of the segmentation framework which consists of landmark
detection, shape inference, model deformation and shape refinement. Using
landmark detection and shape inference, we are able to do model initialization
(i.e., organ localization). After the shape model is initialized, the shape is deformed
and refined alternatively to fit the image boundary.
initialized shape is deformed following the image gradient informa-
tion. During the deformation procedure, the shape refinement is em-
ployed as high level constrains to avoid getting stuck in local minima
of the image information. Denote the training shape matrix as DS, and
the intermediate deformation result as yS. Then x is computed by
solving (5) with DS and yS. DSx is used as the refined shape and trans-
formed back. In this refinement procedure, e may not have large val-
ues since the model is already roughly aligned after initialization.
However, modeling e is still necessary to capture small errors not fol-
lowing Gaussian distribution.

In Section 5.2, this framework is used to segment 3D liver. The
whole framework is shown in Fig. 3.

5. Experiments

5.1. 2D lung localization from X-ray image

5.1.1. Clinical background
Radiography (X-ray) is the most frequently used medical imag-

ing modality due to its fast imaging speed and low cost. About one
third radiograph exams are chest radiographs. It is used to reveal
various pathologies including abnormal cardiac sizes, pneumonia
shadow and mass lesions. The automation of pathology detection
often requires robust and accurate lung segmentation. The major
challenges of lung segmentation in radiography come from large
variations of lung shapes, lung disease and pseudo-boundary close
to diaphragm. In chest X-ray, the position, size and shape of lungs
often provide important clinical information. Therefore, in this
experiment we try to locate the left or right lung using landmark
detection and shape inference. Out of 367 X-ray images (all images
are from different patients), 200 are used as training data, and the
rest 167 are used for testing purpose. In this study, we select train-
ing samples to ensure a good coverage of different ages and gen-
ders (according to information from DICOM header.) The number
of training samples is determined empirically. The ground truths
are binary masks of manual segmentation results. A 2D contour
is extracted from each mask. To obtain the landmarks for training
purpose, we manually select six specific points (e.g., corner points)
on the contour, and then evenly and automatically interpolate a
fixed amount of points between two neighboring landmarks along
the contour. Thus a rough one-to-one correspondence is obtained
for both landmarks and shapes. Since the detected landmarks
may not be accurate or complete, shape prior is necessary to infer
a shape from them. When applying this model, we constantly use
the same parameter values for all X-ray images, i.e., k1 = 50 and
k2 = 0.15.

5.1.2. Compared methods
In this study, we compare the proposed sparsity-based shape

prior modeling with other state-of-the-art methods. For a fair com-
parison, we intentionally embed different shape models to the
same organ localization framework. (It is not fair to compare com-
pletely different end-to-end systems, e.g., our system vs. ASM



Fig. 4. Comparisons of the right lung localization. (a) Detected landmarks are marked as black dots. There are two detection errors and one point missing (marked as circles,
and the arrows point to the proper positions). (b) Similarity transformation from Procrustes analysis. (c) Shape Model Search module in ASM, using PCA based method. (d)
Shape Model Search in Robust ASM, using RANSAC to improve the robustness. (e) Shape inference method using nearest neighbors. (f) Thin-plate-spline. (g) Sparse
representation without modeling e, by solving (4). (h) The proposed method by solving (5).

Fig. 5. Comparisons of the left lung localization. There is one point missing (marked by a circle), and this lung has a very special shape, which is not captured by the mean
shape or its variations. Compared methods are the same as Fig. 4.
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system, since the performance difference, if any, cannot be solely
attributed to shape prior modeling.) More specifically, the same
learning-based algorithm (Zhan et al., 2008) is used to detect land-
marks for shape inference (organ localization). Furthermore, the
shape is inferred from the detected landmarks directly without
iteratively deforming and fitting to the image boundary. The rea-
sons of this setting are twofold. First, enough times of iterative
deformations may eventually bring the shape to the image bound-
ary accurately because of the deformation strategy. It is then diffi-
cult to evaluate the performance of shape prior models. Thus we
apply the inference method only once without the deformation.
Second, such one-step inference process is very fast and already
good enough as the input for some clinical applications, such as a
computer-aided diagnosis (CAD) program. The compared methods
are listed as the following:

1. PA: Procrustes analysis is used to find a similarity transforma-
tion to fit a mean shape to detected landmarks.

2. SMS: It is the Shape Model Search module in ASM, which
employs the PCA method to refine the input shape. Note that
we are not using the entire ASM framework including boundary
detection and iterative fitting. We focus on the key module of
ASM inducing shape prior information.1

3. R-SMS: The shape model search step in the robust ASM (Rogers
and Graham, 2002) method uses the RANSAC framework to
remove the influence of erroneous detections.
1 Since the detected landmarks are very sparse compared to the whole contour,
directly fitting ASM to the small number of landmarks result in poor performance. To
achieve reasonable performance, a contour is approximated by interpolating points
in-between landmarks. When there is a point missing, the mean position of that point
is used instead.
4. SI-NN: It stands for shape inference using k nearest neighbors. It
is similar to (Georgescu et al., 2005), which uses nearest neigh-
bors to find the closest prototypes in the expert’s structure
annotations. The distance metric we used is based on the L2 dis-
tance between corresponding points.

5. TPS: Thin-plate-spline (Bookstein, 1989) is used to deform the
mean shape to fit detected landmarks. TPS is a non-rigid and
local deformation technology and has been used in robust point
matching application (TPS-RPM) (Chui and Rangarajan, 2003).

6. SSC (4): It is the sparse learning shape method without model-
ing e. The result is computed by solving (4).
5.1.3. Visual comparisons
Some representative and challenging cases are shown in

Figs. 4–6. In Fig. 4, there are some mis-detections which are con-
sidered as gross errors. The Procrustes analysis, SMS method,
SI-NN algorithm and TPS cannot handle such cases. R-SMS is not
sensitive to outliers and performs better. SSC (4) also fails to han-
dle such non-Gaussian errors since e is not modeled. SSC can suc-
cessfully capture such mis-detected points in e and generate a
reasonable shape.

In Fig. 5, the underlying shape of the lung is special and differ-
ent from most other lung shapes (see the mean shape in Fig. 5b).
Furthermore, there is a missing point. Neither a transformed mean
shape or its variations can represent such shape. TPS is very flexi-
ble and able to generate special shapes. However, it fails to handle
the missing point. SSC roughly captures the correct shape and gen-
erates a better result than the others.

In Fig. 6, all six detections are correct. However, the shape’s
details are not preserved using the mean shape or its variations.
Fig. 7 shows the first five modes (i.e., the five largest shape



Fig. 6. Comparisons of the right lung localization. All six detections are roughly accurate. Thus there is no gross error. The regions marked by circles show the difference of
preserved details. Compared methods are the same as Fig. 4.
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Fig. 7. Five largest ASM modes of the right lung. In each mode, we plot shapes from �3r to 3r variance. The thickness of boundaries represented shape variation. For
example, the major variation of the second mode is in the bottom right, which is the boundary between the right lung and the cardiac. Note that the variance of the bottom
left tip is not the major variation in any mode. Thus ASM does not generate accurate results for the case in Fig. 6.
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variations) of ASM. The thickness of boundaries represents major
variations in that mode. Note that since the variations of the
bottom left tip are not the major variation modes, ASM does
not able to preserve these local shape details for this testing case
in Fig. 6. Both SSC (4) and SSC discover more detail information
than other methods. Thus a sparse linear combination is suffi-
cient to recover such details even the gross error e is not mod-
eled. Fig. 8 shows three SSC-selected shape components with
largest weights which generate the result in Fig. 6. Two of them
do have certain levels of detail information in the bottom left re-
gion, although they are still different from the input shape. It
demonstrates that our model can discover meaningful shape
components, and the final shape composition result can well
approximate the testing data. Please note that the proposed
model can not ‘‘create’’ local shape details without the support
of local appearance cues. Instead, our method aims to ‘‘preserve’’
shape details derived by appearance cues given these details ex-
ist in our shape repository. In particular, our method is able to
preserve local shape details even when they are not statistically
significant in the shape space.

Cases in Figs. 5 and 6 are actually similar to ‘‘abnormal testing
cases’’ since they are different from most other shapes in the data-
base. To handle such abnormal shapes, our database needs to con-
tain shape instances with similar local abnormalities. However, our
method is still more efficient in abnormal shape modeling than
other statistical shape models owing to two reasons. First, our
method only requires that abnormal shape instances exist in the
database. In contrast, other methods, e.g., ASM cannot model
abnormal shape unless these shape instances form principal com-
ponents in the shape space, which often requires a large number
of abnormal shape instances in training set. Second, our method
is able to approximate an abnormal shape instance that never ap-
pears in the dataset. For example, we can approximate a lung shape
with abnormalities in both apex and lateral tip regions with the lin-
ear combination of a lung shape with apex abnormality and another
lung shape with lateral tip abnormality.

Fig. 9 shows some results from our proposed method on chal-
lenging cases with medical instruments. Shape prior contributes
to the stableness of the system. It still generates reasonable results
with such misleading appearance cues.

5.1.4. Quantitative comparisons
To quantitatively compare different methods, we report the

mean values and standard deviations of sensitivity and specificity
between binary masks in Table 2 and Fig. 10. Note that the spec-
ificity is always good in all methods. The reason is that the size of
either left or right lung is relatively small compared to the whole
chest X-ray image. Hence, most ‘‘true negative’’ can be correctly
found. Thus we also report Dice Similarity Coefficient (DSC)
(Popovic et al., 2007), which is a good complement to the other
two measurements. DSC is defined as: 2 � TP/(2 � TP + FP + FN),
where TP, FP and FN stand for true positive, false positive and false
negative, respectively. Generally Procrustes analysis, TPS and SMS
achieve good performances, especially when landmarks are



Fig. 9. Some localization results from our proposed method on challenging cases
with medical instruments. Note that the localized shape may not be exactly on the
boundary, since the shape module does not use image information. However, such
results are good enough for the input of CAD program or initialization of
segmentation algorithms.

Fig. 8. Three shape components with largest weights from our model. ‘‘Output’’
means the result in Fig. 6. The three components have weights 0.5760, 0.2156, and
0.9822, respectively.

Table 2
Quantitative comparisons of seven methods. The sensitivity (P %), specificity (Q %) and
Dice Similarity Coefficient (DSC %) are reported for cases in Figs. 4–6. The best
performance of each column is highlighted.

Fig. 4 Fig. 5 Fig. 6

Method P Q DSC P Q DSC P Q DSC

PA 62 99 76 50 99 64 93 99 94
SMS 66 99 78 61 99 72 93 99 95
R-SMS 81 99 88 61 99 72 93 99 95
SI-NN 81 99 87 63 98 73 87 99 90
TPS 59 99 74 75 99 79 97 98 94
SSC (4) 63 98 71 73 99 79 97 99 96
SSC 87 99 91 92 99 91 98 99 96
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correctly detected. However, they are sensitive to non-Gaussian
errors. R-SMS can handle this problem because of the RANSAC
method, but sometimes it fails to deal with the multimodal distri-
bution of shapes. SI-NN is a good nonparametric method. How-
ever, it may not be able to represent shapes which do not
appear in the training data. The sparse linear combination by
SSC (4) can approximate such shape and it generally performs
Fig. 10. Mean values (l) and standard deviations (r) of P, Q and DSC from the left lung
performance of P, Q or DSC. x-axis means seven methods (from left to right) in the sam
better than the others. Without modeling error e, this method still
fails to recover a correct shape. In our proposed method, although
the parameter for e is set to a relatively small value, it still con-
tributes to the performance of the model. It performs the best
in terms of sensitivity and DSC, without sacrificing the specificity.
The standard deviations in Fig. 10 show that SSC also achieves the
best stability among all compared methods.

The experiments are performed on a PC with 2.4 GHz Intel Quad
CPU, 8 GB memory, with Python 2.5 and C++ implementations. The
whole framework is fully automatic. As it benefits from the FISTA
algorithm, our algorithm is very efficient. Given this scale of data,
it takes around 0.5 s to infer a shape from the landmarks.

5.1.5. Evaluation of parameter sensitivity
We also conducted experiments of the parameter sensitivity of k2

(Fig. 11), which controls the sparsity of erroneous detections e. A set
of parameter values is evaluated for data with or without erroneous
detections. Our model consistently achieves similar performance for
data without erroneous detections. In these cases, the sparse linear
combination of training shapes can already approximate the input
shape very well. Thus values in e are usually flat zeros in these cases,
even with different values of k2. For data with erroneous detections,
k2 is critical as it controls the number of nonzero elements in e. Our
model still generates stable results in a reasonably wide range of
parameter values, although the performance eventually goes down
when k2 is far away from this range. This insight analysis shows that
this model is not sensitive to parameter values in a certain level,
(1st row) and right lung (2nd row) of all testing data. In each figure, y-axis is the
e order as Table 2. Squares denote l, segments denote r.



Fig. 11. Parameter sensitivity of k2. A set of parameter values is tested for data with or without erroneous detections. Generally data without erroneous detections (green line)
consistently achieves similar performance for different parameter values, and data with erroneous detections (blue line) also produce stable results in a wide range. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. 3D initialization results for the segmentation framework. First row: using the global transformation based on Procrustes analysis. Second row: using TPS which is a
local and nonrigid deformation technique. Third row: using SSC to constrain the shape. Fourth row: ground truth from manual segmentation. Its surface mesh is obtained by
applying iso-surface method on the binary image. The results from global and local deformation incorrectly include part of the liver or the artifact caused by breath. The
differences are marked by circles. Results from SSC is more similar to the ground truth.
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which makes it general for different data in the same application.
Another observation is that when there is no outlier, this model usu-
ally generates slightly better results than having erroneous detec-
tions, which means that erroneous detections still adversely affect
the model performance even with this sparse gross errors
constraint.

5.2. 3D liver segmentation from low-dose CT

5.2.1. Background and experimental setting
Whole body PET-CT is an emerging medical imaging modality

that combines a Positron Emission Tomography (PET) and an
X-ray Computed Tomography (CT) scan. The co-registered anatom-
ical (CT) and functional (PET) information benefits various clinical
practices, especially for oncology studies. Due to the high variations
of F-fluorodeoxyglucose (FDG) uptakes across different organs, the
preferred way to interpret PET-CT images is in an organ-specific
fashion, which requires organ segmentation. In traditional CT
images, organ segmentation such as liver segmentation (Ling
Fig. 13. Visual comparisons of deformation results using the initialization from Fig. 12. N
the global transformation. Second row: using initialization from TPS. Third row: using init
initialization ensures fewer iterations of deformation and more accurate results. The dif
et al., 2008) has been extensively investigated. However, to de-
crease radiations to patients, CT images in PET-CT scans usually
have low dose and large slice thickness, which result in low contrast
and fuzzy boundaries between organs. Hence, organ segmentation
in whole body PET-CT becomes more challenging than traditional
CT. In this experiment we try to segment the liver from the low-
dose whole body CT, using deformable models and shape refine-
ment. The 3D ground truth of low-dose CT is manually segmented
by multiple clinical experts. Sixty-seven scans are annotated. Forty
are used as training data to train the landmark detector and also
used to construct the data matrix DS, the rest 27 are testing. To ob-
tain the one-to-one correspondence for vertices among all shapes,
we choose one shape as a reference and register it to all the others
using adaptive-focus deformable model (AFDM) (Shen and
Davatzikos, 2000). The shape has around 1000 vertices, and 20
are selected as landmarks. The initialization step is based on land-
mark detection and similar to Section 5.1. A surface model is then
fitted into the image, and is hierarchically deformed to the image
gradient information (Zhan and Shen, 2006). During the deforma-
ote that the deformation modules are the same. First row: using initialization from
ialization from SSC. Fourth row: the same ground truth as in Fig. 12. Generally better
ferences are highlighted by circles.
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tion procedure, our sparsity-based shape prior modeling is used to
refine the shape, which is actually a regularization step to avoid the
deformable model getting stuck in local minima of the image infor-
mation. This method is fully automatic without any manual
interaction.

In this study we use k1 = 50 and k2 = 0.3 for all data. For compar-
isons, we also employ some other shape prior modeling methods
(e.g., SMS, SI-NN) to refine the intermediate deformation result
after several iterations. For a fair comparison, the results for com-
parisons are based on the same segmentation framework, i.e.,
using the same landmark detection and hierarchical deformation
algorithm, with different shape prior modeling.

5.2.2. Visual comparisons
Figs. 12–15 show some visual comparisons in 3D. Fig. 12 com-

pares the shape inference based initialization using the same land-
mark detection input. Since the image contrast of low-dose CT is
very low, landmark detector may easily fail to locate correct posi-
tions. SSC is less sensitive to such errors. Its initialization result is al-
ready very close to the object boundary, which can benefit the
deformation procedure. Fig. 13 shows the deformation results using
the initialization in Fig. 12. The deformation modules are all the
same. Shape refinement is not used in this experiment. Better
initialization not only ensures fewer iterations of deformation but
also produces more accurate results. SSC obtains better results com-
pared to other methods. Fig. 14 compares the shape refinement re-
sults after deformation. The refined shape may not be exactly on the
image boundary since this part is just a regularization step without
considering any image information. After the refinement, the seg-
Fig. 14. Visual comparisons of refinement results after deformation. First row: using sha
ground truth from manual segmentation. The refined shape may not be exactly on the i
image information. The SMS result incorrectly includes a large part of the liver (marked
mentation framework still needs to perform some iterations of
deformation to reach the image boundary. Certainly, a better refine-
ment result can benefit the whole segmentation framework. The re-
fined shape of ASM type method follows the mean shape and
variations, but it incorrectly includes a large part of the kidney.
SSC is more specific to this image and is more accurate. Fig. 15 shows
the final segmentation results from a highly noisy data. Without any
shape prior information, the method fails to provide an accurate re-
sult. Using proposed method, the system is more robust and less
sensitive to image noise. Thus it provides more accurate results.
5.2.3. Quantitative comparisons
Table 3 shows the quantitative comparisons. To evaluate 3D

accuracy, we report the mean value and standard deviation of
the distances between shape surfaces. SSC achieves the best per-
formance compared to other shape refinement approaches. The
whole system takes around 20 s (in a Python implementation) to
segment the liver, including data loading, initialization, deforma-
tion and shape regularization. SSC not only improves the robust-
ness of the deformable model, but also decreases the iteration
times of deformation since it helps avoid local minima of image
information.
5.3. Discussion

The experimental results show the following facts.
pe model search step in SMS as the refinement. Second row: using SSC. Third row:
mage boundary since this part is just a regularization step without considering any

by circles).



Fig. 15. Visual comparisons of final segmentation results from highly noisy data. First row: deformation without shape constraint. Second row: using SSC as the shape
constraint. Compared to the system not using shape prior, SSC is less sensitive to image noise and is more robust. The differences are marked by circles.

Table 3
Quantitative comparisons of the mean values and standard deviations of the distances
(voxel) between surfaces. The best performance of each column is highlighted.

Method Fig. 12 Fig. 14 All data

SMS 2.26 ± 1.72 1.81 ± 2.10 2.16 ± 1.68
SI-NN 4.88 ± 3.61 3.34 ± 3.78 3.82 ± 3.12
TPS 2.92 ± 2.19 5.12 ± 5.29 3.39 ± 3.16
SSC (4) 1.42 ± 1.02 2.39 ± 2.31 2.24 ± 1.70
SSC 1.31 ± 0.95 1.10 ± 0.87 1.13 ± 0.83
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1. This implicitly incorporated shape constraint benefits the
interpretation of images. Such shape-based information
improves the robustness and accuracy of low-level algorithms.

2. The sparse linear combination of shape repository is able to
well approximate an input shape if the input does not have
gross errors. The L1 norm constraint of e handles the non-
Gaussian residuals caused by occlusion, miss detection or point
missing.

3. Our method is able to use a subset of vertices on the contour
and surface as the input. Sparse learning is applied on the this
subset and computes a group of coefficients. Such coefficients
are then used to combine the whole contour or surfaces, which
generate reasonable results. This property can seamlessly
incorporate with multi-resolution scheme. Our method can
naturally extend to multi-resolution without significant over-
head of implementation or computational complexity.

4. We use it to solve two medical image applications with differ-
ent modalities and different types of shapes (i.e., 2D contour
and 3D surface mesh). Thus SSC is independent of the applica-
tion or data dimension, and does not substantially increase the
computational complexity. Existing shape based segmentation
systems can be easily extended by adding this proposed
method as a shape refinement module.

6. Conclusions

In this paper, we proposed a sparse learning based method to
implicitly model shape priors. It alleviates three problems in a uni-
fied framework, i.e., modeling complex shape variations, handling
non-Gaussian errors and preserve local detail information of the
input shape. A segmentation framework is proposed by using this
method as a shape inference module and shape refinement mod-
ule. This framework is extensively validated on two medical appli-
cations, 2D lung localization in X-ray images and 3D liver
segmentation in low-dose CT scans. Compared to state-of-the-art
methods, our shape prior model exhibits better performance in
both studies.

In the future, we look forward to receiving more shape in-
stances to construct our training dataset. As the convex property
of (4) guarantees a global optimal solution, more training samples
will ensure a better composition to approximate the input shape
instance. However, since the optimization procedure will take
more time with more training samples, it is important to build a
shape repository with the most representative shape instances.
This will be an interesting topic in our future work. Potential solu-
tions include matching pursuit, affinity propagation clustering, etc.
We are also interested in the hierarchical modeling of the 3D sur-
face shape. If the shape can be subdivided into pieces according to
both the geometry and image information, we can apply SSC on
each subdivision separately, and then stitch them together to be
the whole surface. This approach can potentially improve the com-
putational cost and decrease the number of required training data.
Last but not least, we also plan to apply this model to more appli-
cations, such as shape matching and registration.
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