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Abstract The steadily growing amounts of digital neuro-
scientific data demands for a reliable, systematic, and com-
putationally effective retrieval algorithm. In this paper, we
present Neuron-Miner, which is a tool for fast and accurate
reference-based retrieval within neuron image databases.
The proposed algorithm is established upon hashing (search
and retrieval) technique by employing multiple unsuper-
vised random trees, collectively called as Hashing Forests
(HF). The HF are trained to parse the neuromorphologi-
cal space hierarchically and preserve the inherent neuron
neighborhoods while encoding with compact binary code-
words. We further introduce the inverse-coding formulation
within HF to effectively mitigate pairwise neuron similarity
comparisons, thus allowing scalability to massive databases
with little additional time overhead. The proposed hash-
ing tool has superior approximation of the true neuromor-
phological neighborhood with better retrieval and ranking
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performance in comparison to existing generalized hash-
ing methods. This is exhaustively validated by quantifying
the results over 31266 neuron reconstructions from Neuro-
morpho.org dataset curated from 147 different archives. We
envisage that finding and ranking similar neurons through
reference-based querying via Neuron Miner would assist
neuroscientists in objectively understanding the relationship
between neuronal structure and function for applications in
comparative anatomy or diagnosis.

Keywords Neuroscientific databases · Data mining ·
Hashing · Neuromorphological space · Random Forests

Introduction

Neuroscientists often analyze the 3D morphology of neu-
rons to understand neuronal network connectivity and how
neural information is processed for evaluating brain func-
tionality (Costa et al. 2010). The size and diversity of
neuroscientific databases have been rapidly increased over
the past decade, resulting in deluge of publicly available
datasets (especially 3D digitally reconstructed neurons),
which consist of heterogeneous multi-center data acquired
from different species, brain regions, and experimental set-
tings (Ascoli et al. 2007; Rautenberg et al. 2014). Figure 1
demonstrates the evolution of the number of neurons in
one such popular public database (Neuromorpho.org). This
has motivated researchers, particularly computer scien-
tists, to develop new search systems for image retrieval
and processing over large-scale datasets for the purpose
of neuron categorization and ultimately comprehension of
its functionality.

In this paper, we propose a data-driven scheme search
and retrieval for large neuron data-bases called hashing
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Fig. 1 Evolution of the number
of neurons in the NeuroMorpho
database in different released
versions till December 2014

forests (HF). Further, to the best of our knowledge, this
is the first work that focuses entirety on hashing in large
neuroscientific databases. This paper also introduces the
Neuron-Miner tool, which is a software package designed
to facilitate easy visualization and analysis of neurons. This
is a lightweight framework which works on any Android-
supported device (mobile phones, tablets etc.) and interfaces
with the central database using a client-server architecture.
The neuron search and retrieval framework is integrated
into Neuron-Miner software tool. This paper is an extension
of our earlier work (Mesbah et al. 2015), where we intro-
duced the HF for the first time and its application for search
and retrieval in neuroscientific image database. In contrast
to Mesbah et al. (2015), the current work has the follow-
ing additional improvements: (1) improvised formulation of
hashing forests with inclusion of oblique splitting functions
and the concept of cluster validity, (2) exhaustive valida-
tions on retrieval performance, ranking, and time analysis
over a larger and more heterogeneous dataset of 31266 neu-
rons (additional 13,060 neurons in comparison to Mesbah
et al. (2015)), and (3) additional emphasis on the software
implementation aspects and design paradigms behind the
Neuron-Miner tool, where HF is integrated. The hash table
generation and the formulation for code comparison (for-
ward and inverse coding) have been suitably adapted from
Mesbah et al. (2015).

State-of-the Art

Query-based retrieval of relevant neurons within databases
is important for comparative morphological analysis which
are used to study age related changes (Rautenberg et al.
2009) and the relationship between structure and func-
tion (Costa et al. 2010). In this section, we provide an
overview on generalized hashing methods proposed in
the machine learning community and further delve into
some recent works on neuron retrieval techniques in the
neuroscience community.

Generalized Hashing Methods

Several efficient encoding and searching approaches have
been proposed for retrieval in machine learning commu-
nity. These include data independent methods (e.g. Locality
Sensitive Hashing (LSH) (Gionis et al. 1999; Slaney and
Casey 2008)), data-driven methods like Spectral Hashing
(SH) (Weiss et al. 2012), and Self Taught Hashing (STH)
(Zhang et al. 2010).

Locality Sensitive Hashing (LSH) The idea behind the
LSH is that if two points are similar and close together, then
upon randomized linear projections they will remain close
to each other. The LSH generates binary encoding by parti-
tioning feature space with randomly generated hyperplanes
(Gionis et al. 1999; Slaney and Casey 2008). The LSH
is a data independent method since it randomly generates
hashing functions regardless of the data distribution.

Spectral Hashing (SH) Unlike LSH, instead of working
on the original feature space, the SH generates hash codes
using low dimensional representation obtained using Lapla-
cian Eigenmaps (LEM) (Weiss et al. 2012). The SH is a
data dependent hashing approach, which generates the hash
codes by thresholding a subset of Laplacian eigenvectors
at zero.

Self Taught Hashing (STH) Zhang et al. (2010) intro-
duced self-learnt hashing functions (data dependent) by
median-thresholding the low dimensional embedding from
LEM and training a support vector machine (SVM) clas-
sifier as the hash function for encoding new input data.
The STH focuses on the local similarity structure and for
each query it finds the k-nearest neighbors using binary
Hamming distance.

Data independent methods like LSH require large code
words to efficiently parse the feature space as they rely
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on their asymptotic nature for convergence (Yu and Yuan
2014). For similar code lengths, SH and STH can pro-
vide better retrieval as the hashing function is based on
the data distribution. However, these data driven methods
are mainly challenged by their restricted scalability in code
size and lack of independence of the hashing functions. It
has also been observed that increasing code length in such
data driven methods may not necessarily improve perfor-
mance monotonically, depending on the data characteristics.
Redressing these issues are crucial for fast growing hetero-
geneous neuroscientific databases, where both scalability
and retrieval performance are important.

Non-hashing based methods In addition to hashing based
methods, distance preserving dimensionality reduction
methods are also popular for retrieval. For compare and
contrast the accuracy and time efficiency of hashing meth-
ods, we additionally include popular linear subspace learn-
ing methods like Principal Component Analysis (PCA)
(Hotelling 1933) and Neighborhood Preserving Embedding
(NPE) (He et al. 2005) for non-hashing based retrieval.
PCA estimates the subspace projections that maximally pre-
serve the data variance and aims at preserving the global
Euclidean structure of the data. Differing from PCA, NPE
preserves the local geometric structure of the data during
subspace projection which is ideal for similarity preserv-
ing retrieval. Additionally, NPE is also reported to be less
sensitive to outliers in comparison to PCA. He et al. (2005)

Retrieval in Neuroscience

Retrieval methods have also been investigated recently in
neuroscience for large scale neuron retrieval. Costa et al.
(2014) proposed a neuron search algorithm, where pair-
wise 3D structural alignment was employed to find similar

neurons. In another approach, Polavaram et al. (2014)
focused on the evaluation of morphological similarities and
dissimilarities between groups of neurons deploying unsu-
pervised clustering technique using expert-labelled meta
data (like species, brain region, cell type, and archive).
Recently, Wan et al. (2015) proposed a tool called Blast-
Neuron for comparing and clustering 3D neuron reconstruc-
tions. They retrieve similar neurons for a query neuron by
retrieving candidate neurons based on their global morphol-
ogy features, followed by local spatial alignment between
the topology and geometry of the retrieved candidates to
rank them. Due to pairwise comparisons of the neurons, the
speed and scalability of these approaches are challenging
especially in the current case of retrieval in large databases.
This challenge can be efficiently overcome through hashing,
as it effectively reduces pairwise comparisons to com-
putation of efficient binary distances on compact binary
codewords.

For better scalability of retrieval to a growing hetero-
geneous database, we design hashing functions established
upon unsupervised random forests called Hashing Forests
(HF). The HF are trained to parse the neuromorphological
space in a hierarchical fashion and we demonstrate that HF
can generate more sensitive code words than LSH, SH or
STH by effectively utilizing its tree-structure and ensem-
ble nature. Trees in HF are trained independently and they
are more easily augmented for evolving databases than SH
and STH, which require complete retraining. In compari-
son to random forest hashing method proposed by Yu and
Yuan (2014), we introduce an inverse coding scheme which
effectively mitigates database-wide pairwise comparisons,
which is better suited for fast large-scale hashing. Figure 2
schematically illustrates the different methodological steps
involved in using HF for neuron retrieval. In the following
section, we provide underlying mathematical formulation

Fig. 2 Schematic of the proposed method: For a query neuron, we
extract neuromorphological features (Step 1), which are then fed
into the learnt Hashing Forests (Step 2). This results in a similarity-
preserving binary query hash code (Step 3). Comparing this hash code

to the Hash Table (codes of neurons in the search database) through the
proposed inverse coding scheme (Step 4), we find and rank neurons
that are morphologically similar to the query neuron (Step 5)
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Fig. 3 Representation of a neuron with some of its morphological
measurements

and discuss its software integration with the Neuron
Miner tool.

Mathematical Formulation

Neuromorphological Space

The concept of the neuromorphological space has been
introduced by Costa et al. (2010), where each neuron is
represented by a set of morphological and topological mea-
sures. This feature space is used for multidimensional anal-
ysis of neuronal shape and showed that the cells of the
same brain regions, types, or species tend to cluster together.
This motivated us to leverage this space for evaluating inter-
neuron similarity and propose a data-driven retrieval system
for large neuron databases. We used the publicly-available
Lmeasure software toolbox for extracting quantitative mor-
phological measurements from digital 3D reconstructions
of neurons (Scorcioni et al. 2008). These include features
quantifying neurons at the level of the whole neuron, the
branch level, and the bifurcation level. A sample neuron
with some of its quantitative morphological measurements
is illustrated in Fig. 3.

In total, we selected 37 features tabulated in Table 1.
A detailed description of each feature metric has been
presented in Overview of L-Measure (2015).

Hashing Forests

Hashing functions are used to encode records into hash
codes, such that simple binary distance, defined on the hash
codes, preserves similarity amongst the encoded records.
Ideally, the hash function should generate compact and easy
to compute representations, which can then be used for
accurate search and fast retrieval (Weiss et al. 2012). In the
context of neuroscientific databases, the desired morpho-
logical similarity preserving aspect of the hashing function
implies that morphologically similar neurons are encoded
with similar binary codes. This implies that for a particu-
lar query neuron (say nq ), the bucket of K morphologically
similar neurons retrieved from the databaseD through hash-
ing should be ideally as same as the K-nearest neighbors
calculated using standardized Euclidean distance over the
whole neuromorphological space. The rational behind this
assumption is that the Euclidean distance defined on the
subspaces between neurons correlates well with the desired
morphological similarity. However, the Euclidean distance
is not a desirable similarity measure because it requires sig-
nificant memory expenditure and increases computational
time for exhaustive pairwise comparison during hashing
throughout in large neuron database.

In this work, we model hashing functions through unsu-
pervised randomized forests (H ), which generates compact
binary code blocks (say, CH ) encoding the neuromorpho-
logical feature space. We hypothesize that computationally
cheaper binary distance measures (such as hamming dis-
tance etc.), defined between the generated code blocks cor-
relates well with the inter-neuron morphological similarity,
and thus aiding in effective hashing. In the following sec-
tions, we discuss in detail the different stages involved

Table 1 Quantitative
morphological measurements
extracted from 3D digital
reconstructions of neurons

Search specificity Features

All features arbor length, arbor height, arbor width, arbor depth, total volume,

total number of tips, number of bifurcations, total surface, number

of branches, diameter, soma surface, number of stems, contraction,

fragmentation, Pk- classic + Branch level and Bifurcation level features.

Branch level average and max helicity, average and max fractal dimension, average

and max branch path length, max branch order,average terminal degree,

path distance, euclidean distance.

Bifurcation level average partition asymmetry, average and max local amplitude angle,

average and max remote amplitude angle, average and max local tilt

angle,average and max remote tilt angle, average and max local torque

angle, average and max remote torque angle
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in using hashing forests for encoding and retrieval within
neuroscientific image databases.

Training phase

The hashing forest (H ) is an ensemble of binary deci-
sion trees which partitions the feature space hierarchically
based on learnt binary oblique split functions. We intro-
duce randomness through feature subspace bagging and
bootstrapping to generate maximally decorrelated trees. The
goal of a decision forest is to combine the predictions
of several decorrelated trees built with different compo-
nents in order to achieve high robustness in regards to
noisy features.

The pseudo code for training of the hashing tree has been
represented in Algorithm 1. Here, each hashing tree hk is
grown in an unsupervised fashion by recursively partition-
ing the feature set Xn, which reaches a particular node n

into two subsets X2n and X2n+1. At each split node n, split
functions φn are generated as shown in Eq. 1, which are
randomly selected hyperplanes that split the feature space
into two subsets. The hyperplane φn is parametrized by the
parameter set θn, which comprise of the node-level feature-
wise mean vector μn, the feature-wise standard deviation
vector σn, and a vector of coefficients of individual features
αn along with an intercept scalar α0

n. The values of μn and
σn are estimated locally from training data Xn that reaches
the node n.

The oblique split φn(x, θn) is defined as follows:

φ(x, θn) =
(
x − μn

σn

)
.αn + α0

n (1)

In this work, we use randomized node optimization,
generating a family of candidate splits (Fn), where each
split (say θc ∈ Fn) is multivariate and assigned ran-
domly generated coefficient values (say αc computed from a
parameter hypersphere of radius 1 centred at the origin (i.e.√∑ |αc|.2 = 1 ). The intercept α0

c is generated as a random

value between the minimum and maximum of
(
x−μn

σn

)
.αc.

The coefficients are standardized by normalizing them to
make their l2 norm = 1 ( i.e.

√|αc|.2 + |α0
c |2 = 1). Here, Fn

is generated by randomly selecting numVar features from
Xn at each split node and the candidate split function, which
maximizes the node scoring function (given by Eq. (5)) is
assigned to the split node in which:

θn = argmaxθc∈Fn
E (Xn, θc) (2)

Using the above oblique split, the data set Xn is split into
left and right subsets X2n and X2n+1 by corresponding split
functions as follows:

X2n = {x|x ∈ Xn ∧ φn(x, θc) ≤ 0} (3)

X2n+1 = {x|x ∈ Xn ∧ φn(x, θc) > 0} (4)

The choice of the optimal node split function is an inter-
play of two major factors namely, tree balance (EB ) and
cluster validity (EC), which are unified in defining E as
shown below:

E (Xn, θc) = EC(Xn, θc)︸ ︷︷ ︸
Cluster Validity

× EB(Xn, θc)︸ ︷︷ ︸
Tree Balance

(5)

The pseudo code for generation of optimal splits using
cluster validity has been represented in Algorithm 2.
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Cluster Validity Recursive splitting of the neuromorpho-
logical space can be modelled as a clustering opera-
tion, where morphologically similar neurons are grouped
together as we traverse down the tree. It is therefore appro-
priate to evaluate the splitting functions on how well they
partition the feature space such that data elements within
particular child node are more morphologically similar than
across the other children nodes. This translates into two
measurement criterion for cluster validity: (1) Compactness
within the a child node and (2) Separation across other
children nodes. The compactness is often associated with
dispersion within a dataset allocated to a particular child
node and the separation is measured as a distance measure
between the datasets across other children nodes.

Towards this end, we evaluate the cluster validity
EC(Xn, θc) of split, generated by a candidate split function
φc, using the Krzanowski and Lai Index (Albalate and Suen-
dermann 2009; Kovács et al. 2005; Desgraupes 2013). In
Krzanowski and Lai Index, the compactness and separation
of the candidate split function φc is evaluated together by
minimizing the empirical distortion induced due to splitting
the dataset into the children nodes as follows:

E KL
C (θc,Xn) =

22/numFeat
(

1
|Xn|

∑
xi∈Xn

min
j∈(X2n,X2n+1)

(dM(xi , cj ))

)
(6)

where, dM(xi , cj )) is the Mahalanobis distance. It is defined

as dM(xi , cj ) =
√

(xi − cj )�−1(xi − cj )T , where � is the
covariance matrix estimated from Xn. cj refers to the node
specific centroid evaluated from the dataset allocated to a
particular child node. This measures were evaluated for each
candidate split function at the split nodes and contributed as
the EC term in the node scoring function (Eq. 5).

Tree Balance Imbalance in an unsupervised tree is induced
if the split divides the datasets into the children nodes in
a skewed fashion, resulting in one child node encoding a
larger data subset than the other node i.e. |X2n| > |X2n+1|
or |X2n+1| > |X2n|. We measure the degree of tree balance
using a sigmoid function as follows:

EB(Xn, θc) = 2

1 + eγ.τ (Xn,θc)
(7)

where

τ(Xn, θc) = max

{( |X2n|
|X2n+1| − 1

)
,

( |X2n+1|
|X2n| − 1

)}
(8)

In Eq. 7, γ is a hyper parameter that controls the impor-
tance of imposing tree balance while evaluating oblique
splits. Increasing γ implies higher importance placed on
tree-balance in Eq. 5 and this is illustrated in Fig. 4, where
increasing γ penalizes more as tree imbalance increases.

Fig. 4 Variation of EB(Xn, θc) with increasing tree imbalance
τ(Xn, θc) under different values of γ

The tree is grown through recursive splitting of the
training dataset until the maximum defined tree-depth
(treeDepth) is reached. We create an ensemble of such inde-
pendently grown trees to create the hashing forest H . Such
a forest of numTrees binary trees with maximum depth
of treeDepth, requires numTrees × treeDepth bits
to encode each neuron. The time complexities to grow a
tree and ensemble a forest are tabulated in Table 2 (S1-S2)
(Louppe 2014).

Extension to non-Euclidean distances In the proposed
formulation, the oblique split defined in Eq. 1 falls under the
family of hyperplane hashing based locality sensitive hash-
ing methods. The theoretical guarantees of such methods
applies only to certain metrics such as lp ∈ (0, 2] (Wang
et al. 2016). For extension of the proposed HF method to
more complex metric spaces like weighted distance, power
distance and other lp distances, the splitting function has
to be suitably defined to split data in that particular metric
space. Typically, this can be done by considering a random
sample reaching the split node as a pivot element and eval-
uating the metric distance of all other samples about this
pivotal element. The split function can then be defined as
a simple threshold over the obtained metric distances. The
subsequent encoding and retrieval schemes proposed for the
current HF formulation can be seamlessly extended for the
non-Euclidean variants of HF.

Hash Table Generation:

Given a trained tree (hk) of the hashing forest H , each
neuron ni (characterized by the neuromorphological feature
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Table 2 Time complexity
analysis S1 Building tree O(

√
N ∗ M ∗ d) + O(M ∗ 2d−1)

S2 Building forests O(T ∗ (
√

N ∗ M ∗ d + M ∗ 2d−1)) Training

S3 Generating hash table O(T ∗ d) + O(M ∗ S)

S4 Generating Single Query Code O(T ∗ d)

S5 Calculating Inter-neuron similarity

with Forward Code O(M ∗ S)

S6 Calculating Inter-neuron similarity

with Inverse Code O(T ∗ d) Retrieval

S7 Quick sort O(M logM)

Symbols: Code word Size S = T (2d+1 − 2)); Number of Trees T ; Number of Features N ; Tree Depth d;
Retrieval Database Size M .

vector xi) in the database is passed through it till it reaches
the leaf node. For a tree hk of depth treeDepth, the split
and the leaf nodes are assigned breadth-first order indices
(say nk), which are associated with binary bit bk

n in the code
word Ck(xi ). For a particular neuron, if node nk is part of
its path, then bk

n is set to 1, otherwise, to 0. This leads to
a (2treeDepth+1 − 2) bit sparse code word Ck(xi ). It must
however be noted that only treeDepth bits are required
to generate the codeword as there are only 2treeDepth pos-
sible traversal paths, each leading to a unique leaf node.
We repeat the same process for every other tree in the for-
est to generate the sparse code block CH (xi ) of size S =
(numTrees × (2treeDepth+1 − 2)) for each neuron.

For faster retrieval, we pre-compute the code blocks for
all M neurons in retrieval/training database D and gen-
erate a hash table of size M × S. This is stored using
(M*(numTrees*treeDepth)) bits along with traversal
paths saved in a (2treeDepth ∗ (2treeDepth+1 − 2)) binary
look-up table. However, as the database gets bigger, so will
the time required for calculating the pairwise hamming dis-
tance between the codewords of all the data points in the
dataset. The time complexity of generating the hash table
for all the neurons in the database is shown in Table 2
(S3). To address this problem, we further propose to gen-
erate the inverse codewords to improve the retrieval speed
performance.

Inverse Coding

Each bit bk
n in CH encodes a unique neuromorphologi-

cal sub-space, which is constrained by the split functions
of tree hk leading to node nk . In order to avoid pair-wise
comparisons between the neurons during retrieval in large
databases, we formulate an inverse coding scheme. We
transpose the hash table to generate the inverted hash table
I , which is a sparse (S × M) dimensional matrix. This
implies that for feature vector xi , if bit bk

n in Chk (xi ) is
1, then I (nk, i) = 1, and it belongs to the feature sub-
space encoded by bk

n. Given a new query neuron, instead

of calculating the pairwise-similarity between all neurons
in D , we extract the corresponding hash code from the
hash table, which is a representation of similarity vec-
tor between the new point and all the other data points.
Through the generation of the inverse hash table I , we
have effectively encoded the neuromorphological subspaces
along with associated neurons.

Testing Phase

The path in which a neuron traverses through the trained
trees is used to define inter-neuron similarity. For a given
query neuron nq (with feature vector xq ), the correspond-
ing code block CH (xq) is generated in a similar fashion
to the Hash Table Generation phase. In the direct retrieval
formulation, pairwise comparisons (through hamming dis-
tance) between CH (xq) and code blocks of neurons (say
CH (xi) for neuron ni) in the retrieval database D are made
to evaluate inter-neuron similarity S (nq, ni) i.e.

S (nq, ni) = 1

S

∑
∀bits

(
CH (xq) == CH (xi )

)
(9)

If nq generates the same code block as a neuron in D (i.e.
both belong to the same neuromorphological subspace), we
assign perfect similarity to them (S = 1). However, the
pairwise comparison for large scale databases is compu-
tationally expensive as seen from its time complexity in
Table 2 (S5). To mitigate this, in the inverse coding, we
formulate the similarity function as SI = numTrees ∗
(treeDepth− 1) dimensional similarity accumulator cell
Anq . Given the code block CH (xq) for the query neuron
nq , Anq is calculated as:

Anq (i) = 1

SI

∑
∀nk

I (nk, i) if bit bk
n in CH (xq) = 1 (10)

The inter-neuron similarity S (nq, ni) is related to Anq

as S (nq, ni) = Anq (i). Such an inverse formulation is
computationally more efficient for large databases (as seen
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from the order complexity in Table 2 (S6)), than the for-
ward scheme (Table 2 (S5)). The inverse coding evaluates
inter-neuron similarity by accumulating the membership of
the database neurons from the columns of the inverse hash
table corresponding to the tree nodes reach by that of the
query neuron in HF. This effectively mitigates the need for
pair-wise comparisons, leading to a time complexity that is
independent of the database size M .

In the task of retrieving an ordered set ofK most morpho-
logically similar neurons from D , we sort the neurons of the
database in ascending order of inter-neuron similarity using
quick-sort (time complexity of O(M logM)). The top (2K)
nearest neighbor neurons are further re-ranked according
to their normalized Euclidean distance from the query neu-
ron for better morphological consistency (with an additional
time complexity of O(KN + K logK)). For validation pur-
poses, this re-ranking using normalized Euclidean distance
is performed on all comparative methods and baselines
considered in Section “Experiments and Results”.

Experiments and Results

Database

We used 31266 3D reconstructions of neurons extracted
from 147 different archives, which curated from mul-
tiple laboratories and are publicly available on http://
neuromorpho.org (Ascoli et al. 2007). All archives listed
as ‘In the Repository’ in the list of archives in the Neu-
romorpho.org repository have been included in this study
(Literature Search Main Results 2015). We employed the
Lmeasure toolbox to extract 3D neuromorphological fea-
tures, which characterize different aspects of neuron struc-
ture and topology (Scorcioni et al. 2008; Costa et al. 2010).

Evaluation Metrics

Successful morphology-preserving hashing in neuroscien-
tific databases depends on the efficacy of the code word
to compactly parse and represent the neuromorphological
space as well as efficiently compute inter-neuron similarity
using the generated hash codes. As part of validations, we
use the following evaluation metrics:

Neighborhood Approximation We introduced the Neigh-
borhood Approximation (NA) graph in Mesbah et al. (2015)
to model how close the estimated neighborhood, computed
from code words, (from the hashing method), approximates
the true neighborhood around a neuron in the neuromorpho-
logical space. For a particular hashing method, the NA for
the j th neighbor is defined as the average of the normalized
Euclidean distances between the neurons and retrieved j th

neighbor for all neurons in D . Let, for neuron ni (with fea-
ture vector x0i ), the j th neighbor have a feature vector xj

i ,
then

NA(j) = 1

Mtest

(
Mtest∑
i=1

ε(x0i , x
j
i )

)
(11)

where

ε(x0i , x
j
i ) =

⎛
⎜⎝

√√√√ 1

N

N∑
a=1

(
x0
ia − x

j
ia

sa

)2
⎞
⎟⎠ (12)

ε(x0i , x
j
i ) is the standardized Euclidean distance between x

0
i

and its j th neighbor xj
i with ath feature standard devia-

tion sa estimated over the whole database (which is chosen
for invariance to scales of different features). NA-graph is
averaged over Mtest test neurons from the testing dataset.

Retrieval Performance We evaluate the retrieval perfor-
mance by computing two metrics: Kendall’s rank corre-
lation coefficient κ and Gmean. The Gmean is often used
in information retrieval algorithms to better understand the
trade-off between precision and recall. Let Nε(ni) repre-
sents the set of neurons ‘relevant’ to the query neuron,
which is the top K nearest neighbors defined upon the
normalized Euclidean distance in the neuromorphological
space and NH (ni) represents the retrieved neurons through
hashing as a set of k morphologically similar neurons. The
Gmean is calculated as an average over the test database and
is calculated as:

Gmean = √
Precision × Recall (13)

= 1

Mtest

M∑
i=1

√∣∣Nε(ni)
⋂

NH (ni)
∣∣2

|NH (ni)| × |Nε(ni)| (14)

Kendall’s rank correlation coefficient κ is used to mea-
sure the association between two ranked lists (Kendall
1948). We use this metric to evaluate the efficacy of ranking
of relevant neurons. Given a pair of ranking lists

(
rR
1 , rT

1

)
,
(
rR
2 , rT

2

)
, · · · ,

(
rR
n , rT

n

)

(here, retrieved list (R) vs. true neighborhood list (T )).

A pair of observations
(
rR
i , rT

i

)
and

(
rR
j , rT

j

)
are said to

be concordant if the ranks on both lists agree i.e. rR
i >

rT
i andrR

j > rT
j or rR

i < rT
i andrR

j < rT
j . The pairs are

deemed discordant if rR
i > rT

i andrR
j < rT

j or rR
i <

rT
i andrR

j > rT
j . If rR

i = rT
i andrR

j = rT
j , they are

http://neuromorpho.org
http://neuromorpho.org


Neuroinform

neither concordant nor discordant. The κ for the retrieval
performance on test dataset is evaluated as follows:

κ = 1

Mtest

Mtest∑
i=1

ni
c − ni

d

ni
c + ni

d

(15)

where ni
c and ni

d are the number of concordant and discor-
dant pairs extracted from the respective R and T lists for
each neuron ni . In case of total agreement and disagreement
between the two paired lists, the coefficient value is κ = 1
and under κ = −1, respectively.

Retrieval Time Hashing aims at minimizing the time for
retrieval by reducing expensive pairwise distance compu-
tations to cheaper binary operations defined over the hash
codes (like xor for Hamming distance computation). As
discussed in Section “Mathematical Formulation”, we con-
sider two different strategies for hash code comparison: (1)
Forward Coding and (2): Inverse Coding. For a particular
hashing method, the training time includes time required
to train the hashing functions and generate the hash table
for database. The testing time includes the time required
for generating the hash codes for the query items, time for
comparison (forward / inverse coding), sorting and ranking
the approximate nearest neighbors. We incur an additional
time overhead during testing, if the fetched neighbors are
re-ranked according to their normalized Euclidean distance
from the query item.

Comparative Methods

The main contribution of the hashing forests formula-
tion presented in this paper over our previously pro-
posed formulation (Mesbah et al. 2015) is the introduction
of oblique split functions and improvised node-scoring
with cluster validity measures. Further, we formulate tree-
traversal path based coding scheme as opposed to leaf-based
scheme proposed in Yu and Yuan (2014) for more effi-
cient hierarchical parsing of the neuromorphological space.
These propositions lead us to four baselines to test the
hypothesis that introducing these contributions improve
hashing performance. The baselines are tabulated in
Table 3. Each baseline differs in terms of the choice of the
encoding scheme (leaf node/tree path encoding), the inclu-
sion/exclusion of cluster validity and the type of the splitting
function.

Comparisons to these baselines would support our
hypothesis that oblique splits with cluster validity leads to
better parsing of the neuromorphological space, resulting
in higher code efficiency. In addition, we validate the per-
formance of our proposed algorithm (HF) by comparing
it against popular large scale hashing methods discussed

Table 3 Hashing forest baselines

Baselines Encoding

LN - Leaf node Cluster Split type

TP - Tree-path Validity

Baseline 1 (BL1) LN × Axis-aligned

Baseline 2 (BL2) TP × Axis-aligned

Baseline 3 (BL3) TP × Oblique

Baseline 4 (BL4) LN � Oblique

Proposed TP � Oblique

in Section “State-of-the Art”, including Locality Sensitive
Hashing (LSH), Spectral Hashing (SH), and Self taught
hashing (STH). Additionally, as a baseline for comparison
against hashing based approaches we include dimension-
ality reduction based retrieval methods, including Princi-
pal Component Analysis (PCA) and Neighborhood Pre-
serving Embedding (NPE). In case of PCA and NPE,
we used single-precision floating point representation for
the embedding and retrieval was done by pairwise com-
putation of Euclidean distance in the embedding space
between the query item’s embedding and that of the target
database.

Hyperparameter Selection for Hashing Forests

The main hyper parameters to be optimized for hash-
ing forests include: tree balance parameter (γ ), number
of trees (numTrees), and their depth (treeDepth).
For hashing forests, the hash code word size is given by
numTrees×treeDepth. Fixing the code-size, we first
optimize γ to be used in further analysis. For this, we fix
the code-size at 128 bits and optimize γ for three config-
urations of HF: Shallow Trees (HF-S with treeDepth
= 2), Moderately Deep Trees (HF-M with treeDepth
= 4), and Very Deep Trees (HF-D with treeDepth =
8). The numTrees are chosen accordingly as 64, 32
and 16 respectively. The hyperparameter γ was varied
as [2.0, 1.0, 0.5, 0.25, 0.1and0.05] with decreasing impor-
tance towards tree-balance. The Gmean for each of these
configurations is tabulated in Table 4.

From Table 4, comparing HF-S, HF-M and HF-D, we
infer that for sufficient depth, the performance of HF is
invariant to choice of numTrees and treeDepth. We
observe consistent optima at γ = 1.0 for all three tested
configurations. Therefore, for the rest of validations, we
fix the tree balance parameter γ at 1.0 and treeDepth
at 4, corresponding to moderately deep trees. This obser-
vation is extendable to other code-sizes as trees are grown
independently in a decorrelated fashion.
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Table 4 Hyperparameter selection for HF: Gmean vs. γ

γ 2.0 1.0 0.5 0.25 0.1 0.05

HF-S 51.09 54.25 51.34 52.87 53.80 52.96

HF-M 65.27 68.04 66.31 65.63 65.71 65.57

HF-D 67.18 67.65 67.15 63.51 64.20 64.10

Neighborhood Approximation

In an unsupervised hashing setting, the distance function
defined on the original neuromorphological feature space
(say, normalized Euclidean distance (NAEUC)) is deemed
to have the best neighborhood approximation. Thus, the
hashing method that diverges the least from the NAEUC

graph preserves the true neighborhood to the best possible
extent. The NA graph is evaluated over the target database
and the results for all comparative methods are reported in
Fig. 5. For fair validation, we keep the size of the code-block
fixed at 256 bits for this experiment. This evaluation is per-
formed for all the baselines and comparative methods. The
treeDepth for the baselines BL1-4 and HF was fixed at
4, thus leading to numTrees of 64.

Hashing retrieval performance vs. Code block size

We measure the Gmean and Kendall’s κ statistic for all com-
parative methods as well as baselines by varying the code

Fig. 5 Neighborhood Approximation (NA) graph for the comparative
methods and configurations of hashing forests for fixed codeword size
(32 bytes)

block size from 4 bytes to 64 bytes in geometric order of 2.
We compare the performance for retrieval (both search and
ranking) of the top 10 neighbored neurons using these meth-
ods for a heterogeneous test set of 800 randomly selected
neurons (not included while training) and the results are
tabulated in Tables 5 and 6. This validation is performed
to evaluate the improvement in similarity preserving aspect
of the hash code with increasing code-size. It also serves
to validate our hypothesis that introducing oblique splits
with cluster validity and using whole tree-traversal path for
encoding leads to more efficient hash codes over the base-
lines and comparative methods. Figure 6 demonstrates the
performance for 4 distinct neurons of differing morpholo-
gies with the closest neighbors retrieved using the proposed
HF formulation and the ground truth (minimal normal-
ized Euclidean distance). The HF was trained with γ =
1.0, numTrees = 64 and treeDepth = 4 and through
visual evaluation, we observe close morphological simi-
larity amongst the ground-truth neurons and its retrieved
neighbors.

The time for retrieval is an important evaluation met-
ric for retrieval using hashing. To compare and contrast the
retrieval time against exhaustive pairwise distance compu-
tation, we report the time for training and testing for the
comparative methods and baselines in Table 7. The training
time includes the time to train the hash functions and extract
the hashing table on the training data of 30466 neurons. The
testing time includes the time for generation of the test hash
codes and comparing it against the a priori extracted hash
table using forward / inverse coding schemes for 800 test
neurons. These algorithms were implemented on a general
purpose 64-bit CPU with 16GB RAM memory and 2.7GHz
Intel(R) Core(TM) i7-4600U processor. In case of retrieval
with a mobile application, the actual retrieval time addition-
ally depends on the data transfer speed and the hardware
configuration of the mobile device.

Incremental training with database evolution

As the database evolves with addition of new data, the cur-
rent form of the hashing function can be directly employed
for populating the hash table with the new incoming data
(method M1). Alternatively, the hashing functions can
be retrained on the extended dataset with the additional
new data (method M2). If the current code-size cannot
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Table 5 Retrieval performance (Gmean) vs. Code block size

Code Size Comparative Methods Baselines Proposed

(in bytes) LSH SH STH PCA‡ NPE‡ BL1 BL2 BL3 BL4

4 24.08 26.45 24.80 42.11 48.20 29.23 30.91 29.44 30.59 34.27

8 28.86 35.20 38.20 57.15 52.41 29.69 42.92 44.19 45.92 49.41

16 41.15 53.00 43.40 61.60 62.65 43.11 58.40 60.61 63.16 69.51

32 46.98 67.40 47.60 64.91 67.75 59.37 72.70 76.05 81.00 83.13

64 57.51 81.60 47.20 67.72 70.80 74.53 84.27 87.31 83.48

* - These are non-hashing comparative methods (dimensionality reduction) using floating-point representation (1 float = 4 bytes).

Note: The best performance for a fixed code size is shown in boldface. and the best result amongst all the comparative methods is .

sufficiently handle the added heterogeneity as the database
evolves, the hashing functions can be augmented with fur-
ther hash functions trained independently only on the addi-
tional new dataset (method M3) and appending the newly
generated hash codes to the existing hash table. In case of
HF, such a code augmentation translates to training addi-
tional independent hashing trees on the additional dataset
and concatenating these to the tree ensemble of the exist-
ing HF. Alternatively, the hash functions can be retrained on
extended dataset for a larger code-size (method M4). Com-
paring the alternative methods to handle database evolution,
M2 and M4 are computationally expensive in comparison
to M1 and M3. It must be noted that in scenarios where
database evolution involves addition of new morphological
features, the proposed and the comparative hashing meth-
ods can potentially be extended to multi-view formulations
such as proposed in Liu et al. (2015).

To evaluate the performance of different hashing func-
tions as the database evolves, we create a test scenario
wherein the initial hash functions are trained on 19886
neurons curated from 86 archives. The database evolu-
tion is modeled by addition of 5048 new neurons from
16 additional data archives to the initial dataset. The new
incoming dataset is divided into non-overlapping training
and testing datasets of 4548 and 500 neurons respectively.

M1 is trained for a code-size of 32 bytes, M2 is retrained for
the same code size as M1, M3 augments M1 with an addi-
tional 8 bytes making the code-size 40 and M4 is retrained
for a code size of 40 bytes. The retrieval performance eval-
uated using Gmean score for top-10 neighbor retrieval for
each of the proposed and comparative methods is tabulated
in Table 8. To analyze the time overheads incurred during
each of the four methods M1-M4, we also report the training
time and the testing time (using inverse coding) in Table 8.

Discussion

In the previous section, we designed experiments to validate
our hashing forest performance and perform comparative
analysis with reference to other large-scale generalized
hashing methods and baselines. We further discuss in detail
the observations and inferences we draw from them in the
following section.

Neighborhood Approximation

The NA graph evaluates how well a code word gener-
ated by particular hashing method is able to approximate
the neighborhood around a query neuron with respect to

Table 6 Retrieval performance (Kendall’s rank correlation coefficient κ) vs. Code block size

Code Size Comparative Methods Baselines Proposed

(in bytes) LSH SHx STH PCA‡ NPE‡ BL1 BL2 BL3 BL4

4 0.2266 0.2450 0.2280 0.3986 0.4713 0.2879 0.2949 0.2998 0.2913 0.3250

8 0.2875 0.3569 0.3307 0.5628 0.5135 0.2970 0.4015 0.4113 0.4270 0.4554

16 0.3970 0.4729 0.3742 0.6010 0.6218 0.3869 0.5355 0.5354 0.5787 0.6505

32 0.4344 0.7329 0.4049 0.6351 0.6703 0.5492 0.6867 0.7338 0.7847 0.8149

64 0.5382 0.7867 0.4200 0.6645 0.7081 0.7035 0.8230 0.8476 0.8108

∗ - These are non-hashing comparative methods (dimensionality reduction) using floating-point representation (1 float = 4 bytes).

Note: The best performance for a fixed code size is shown in boldface and the best result amongst all the comparative methods is .
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Fig. 6 Visual evaluation of neuron retrieval: For each query neuron on the left (boxed in green), the top-three neighbors retrieved with the
proposed HF algorithm are shown along with ground truth neurons (using normalized Euclidean distance) are shown. The incorrect results are
marked by red boxes

neighborhood defined using normalized Euclidean distance.
From Fig. 5, we observe a divergent trend (with reference
to the ground-truth NAEUC graph) in the NA graphs of
all methods as the neighbor index increases. For a fixed
code size, the HF and other forest based baselines BL1-4
approximate neighborhood better than the comparative

LSH, SH, and STH methods. This supports the hypothe-
sis that effective utilization of the tree-structure along with
ensemble nature of these methods improves data-driven
parsing of the neuromorphological space. Comparing neigh-
borhood approximation of dimensionality reduction driven
retrieval methods, we observe that NPE exhibits better NA

Table 7 Hashing retrieval performance (Training and testing time) vs. Code block size

Exhaustive Code size Comparative methods Baselines Proposed

(in bytes) LSH SH STH PCA‡ NPE‡ BL1 BL2 BL3 BL4

Training (in s) - 4 0.046 0.34 160.9 1.83 1.77 1.78 5.85 5.65

8 0.081 0.49 320.8 3.23 3.41 3.43 11.52 12.06

16 0.166 1.23 684.4 0.124 289.3 6.48 6.41 6.27 25.73 22.39

32 0.270 2.07 1385.6 15.44 13.7 13.9 45.12 48.56

64 0.606 3.612 1953.6 29.09 26.7 27.8 93.15 97.31

Testing(in s) 91.654 4 2.642 2.652 2.718 5.29 5.18 3.282 5.648 5.654 3.282 5.646

Forward coding 8 4.213 4.228 4.357 8.46 8.77 5.036 8.705 8.705 5.035 8.708

16 7.104 7.139 7.329 9.51 9.49 7.838 15.868 15.869 7.836 15.868

32 13.226 13.808 13.808 14.86 14.95 14.255 31.406 31.401 14.256 31.407

64 24.742 24.909 25.676 29.81 31.99 33.119 67.741 67.739 33.019 67.718

Testing(in s) - 4 0.328 0.338 0.414 0.416 0.709 0.715 0.416 0.707

Inverse coding 8 0.543 0.558 0.687 0.660 1.129 1.129 0.659 1.132

16 0.951 0.986 1.176 - - 1.063 2.131 2.132 1.061 2.131

32 1.581 1.653 2.163 1.728 3.771 3.766 1.729 3.772

64 3.142 3.309 4.076 4.222 8.619 8.617 4.222 8.616

∗ - These are non-hashing comparative methods (dimensionality reduction) using floating-point representation (1 float = 4 bytes).
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Table 8 Retrieval performance (Gmean) and time-analysis of hashing methods with database evolution

Comparative M1 M2 M3 M4

Method Original Retrained Augmented Retrained

32 bytes# 32 bytes 40 bytes$ 40 bytes

Performance LSH 40.23 42.93 46.13 47.10

SH 45.32 46.18 47.22 51.40

STH 41.44 42.80 43.15 44.54

BL2‡ 47.87 49.20 49.77 53.43

Proposed 68.20 70.03 71.47 73.37

Training time (in s) LSH 0.098 (0.281) 0.265 0.119 (0.078 + 0.041) 0.292

SH 0.030 (1.263) 1.697 0.192 (0.074 + 0.118) 2.38

STH 3.085 (900.6) 1177.8 67.36 (51.32 + 16.04) 1662.7

BL2‡ 0.379 (7.94) 10.69 1.944 (0.58 + 1.364) 17.8

Proposed 0.318 (30.107) 41.27 3.603 (2.171 + 1.432) 67.98

Testing time inverse coding (in s) LSH 1.012 0.961 1.176 1.305

SH 1.157 1.215 1.413 1.243

STH 1.319 1.467 2.055 2.230

BL2‡ 2.681 2.582 2.972 3.156

Proposed 2.474 2.756 3.282 3.151

∗ - Prior art method (Mesbah et al. 2015)
# - τM1

1 (τM1
2 ) - τM1

1 is the time required to infer hash-codes the new incoming dataset using existing hash functions (τM1
2 is the time required for

training the existing hash functions, however it is not deemed as a part of the training time for M1).
$ - Total training time for M3 is τM3 = (τM3

1 + τM3
2 ) where τM3

1 is the time to train the augmented hash codes on the incoming dataset and τM3
2

is the time required to repopulate the existing dataset through the augmented hash functions.

over PCA as it effectively preserves local neighborhoods
during embedding. In comparison to hashing methods, NPE
demonstrates performance superior to STH and LSH and is
comparable to SH.

Comparing BL2 with BL1, and proposed HF with BL4,
we infer that using tree-traversal path encoding over leaf
node encoding leads to better neighborhood approximation.
This can be associated to the fact that complete decision
path allows for a partial neighborhood contribution in cal-
culation of inter-neuron similarity.This effect is illustrated
in Fig. 7, where we consider two distinct neurons ni and

Fig. 7 Illustration of partial neighborhood effect due to tree-traversal
encoding

nj which share nodes R, S1 and S4 during tree traversal.
However, they reach different leaf nodes L3 and L4 respec-
tively. The similarity metric between ni and nj defined
with tree-traversal path-encoding is S (ni, nj ) = 2/3, as
they shared 2/3rds of the traversal path. In contrast, with
leaf node encoding, S (ni, nj ) = 0, as they reach dis-
tinct leaf nodes. This partial neighborhood helps improving
the neighborhood approximation of the hash codes. Finally,
comparing the baselines BL2 and BL3 to proposed HF, we
observe that the neighborhood approximation is improved
when oblique splits (in HF over BL2) and cluster validity
(in HF over BL3) are employed.

Hashing retrieval performance vs. Code size

Comparative Methods We quantitatively evaluated the
performance of the proposed method for different lengths
of hash codes. It is clearly seen from Tables 5 and 6 that
the proposed HF performance improves as code length
increases, and achieves better results consistently in com-
parison to other hashing based methods in searching and
ranking relevant neurons. It must be noted that we chose
larger code sizes over conventional code sizes (> 16 bytes),
as it was observed that precision-recall performances for HF
and comparative methods for smaller code sizes were not
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sufficient enough for the application at hand. In comparison,
the dimensionality reduction based retrieval methods (PCA,
NPE) exhibit superior retrieval performance for smaller
code sizes (4-8 bytes) over hashing based methods. How-
ever, the retrieval performance for PCA and NPE does
not improve significantly with increasing dimensionality of
embedding with the inclusion of projections corresponding
to lower Eigen values.

By looking at the results obtained from comparative
methods, we observe that the SH performs consistently
better than the LSH and the STH. Though the LSH’s per-
formance steadily increases with increasing code-size, the
improvement is considerably slower that implies that the
LSH needs much higher code sizes for achieving compa-
rable performance to the proposed HF or the SH, which
will significantly increase the computational cost, result-
ing in delayed retrieval (corroborates observations reported
by Yu and Yuan (2014)). In case of the STH, as code-size
increases, the eigenvectors corresponding to higher eigen-
values are utilized in defining the hashing function. This
is not desirable because eigenvalues are often very noisy.
It must be noted that the reported results for LSH, STH,
SH, and BL2 are different from those reported in our pre-
vious work (Mesbah et al. 2015). Because, the database has
increased in size and heterogeneity from 18106 neurons to
31266 neurons and subsequently the configuration parame-
ters have been changed through cross-validation optimiza-
tion. Interestingly, the trend of overall performance reported
in Mesbah et al. (2015) has remained unaltered.

Baselines As established in the discussion of NA Graph,
tree-traversal path based encoding with its partial neigh-
borhood effect demonstrates considerable improvement in
retrieval performance. For code size of 64 bytes, we observe
from Table 5, an overall increase of 9.74 % between BL2
and BL1 (84.27 % from 74.53 %) and 9.24 % between the
proposed HF and BL3 (92.72 % from 83.48 %). This trend
is consistent in the ranking performance as the Kendall’s
κ statistic improvises by 0.1195 between BL2 and BL1
(0.8230 from 0.7035) and by 0.1166 between the proposed
HF and its leaf-encoding baseline BL4. These observations
further corroborate the hypothesis that partial neighborhood
effect is desirable for effective retrieval of true neighbors.
We also report considerable improvement of 8.45 % from
84.27 % to 92.72 % for the 64 byte code size, over our
previous HF formulation (Mesbah et al. 2015) (BL2). This
trend is consistently observed across all the other smaller
code sizes too. These observations demonstrate the supe-
riority of the proposed HF formulation over the baselines
and validates our hypothesis that oblique splits with cluster
validity improves code efficacy. The improved performance
of BL3 in contrast to BL2 is due to the use of oblique splits.
This can be attributed to the following aspects: (a) Oblique

splits can separate distributions that lie between the coor-
dinate axes with a single multivariate split, which might
have required deep nested axis-aligned splits otherwise; (b)
The learnt hashing trees are less biased to the geometri-
cal constraints of the base learner if oblique splits are used
(also observed by Menze et al. (2011)). Further, inclusion
of cluster validity during training, ensured that the neigh-
borhoods, resulting from clustering of similar neurons in
the neuromorphological space (as observed by Polavaram
et al. (2014)), are preserved during the generation of hashing
forest splits. This has resulted in improved retrieval per-
formance of the proposed HF in comparison to the nearest
baseline BL3 (oblique splits without cluster validity).

Time Analysis We profiled the training and the testing
time for retrieval of the comparative methods for vary-
ing code-lengths for 10 trials with setting identical to
Table 6 and tabulated the average observed time for training
and testing in Table 7. In the comparison of the train-
ing times, we observe that all the methods except STH
and NPE exhibit training time of under 100 seconds. The
high training time of STH and NPE is attributed to the
computationally expensive eigenvalue decomposition step
(order complexity of O(M3)). Additionally in STH, the
hash functions are independently trained binary support vec-
tor machine classifiers that are computationally expensive
to train for large datasets (order complexity of O(SMN)).
During retrieval, we observe that employing inverse cod-
ing for hashing methods reduces the time for comparison
and ranking significantly in comparison to forward coding
and is significantly lower than exhaustive pairwise distance
computation. Comparing to the baselines, we observe that
BL1 and BL4 exhibit lower retrieval time in comparison to
BL2, BL3 and the proposed method due to the difference in
the encoding schemes employed for comparison (leaf node
for BL1, BL4 and tree-path encoding for BL2, BL3 and the
proposed method). Compared to other hashing methods, the
proposed method with inverse coding has a higher retrieval
time for the same code size, but is significantly lower
than pairwise comparison used in dimensionality reduction
methods.

Incremental training with database evolution

With addition of new unseen data to the database, we eval-
uate variants of hashing methods (retraining v.s. augmen-
tation ) that have been proposed in Section “Experiments
and Results” and report their retrieval performance (Gmean)
in Table 8. From an overall perspective, we conclude that
augmenting hashing functions with additional bits (M3) per-
forms comparably to retraining (M4) and is superior to
retrieving with the the original hash function (M1). Further,
the proposed HF demonstrates significantly higher retrieval
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Fig. 8 Sequence diagram of the global workflow of Neuron-Miner

performance over the comparative hashing methods (LSH,
STH, SH and BL2) which is highly desirable as the database
continually evolves.

From Table 8 we observe that time overhead for train-
ing/augmenting the hash codes for M1 andM3 are relatively
lower in comparison to retraining based methods (M2 and
M4). These observations are concurrent with the expected
trends as M1 involves no additional learning of the hash
functions and M3 learns the augmentation hash function
on a relatively smaller incoming dataset for a smaller code
size. In comparison, M2 and M4 involves retraining the
entire hash functions on the extended dataset (existing
dataset + incoming dataset). In terms of the testing time,
we observe that M1 and M3 are comparable to M2 and M4
respectively, as the time complexity for inverse coding is
linear in terms of code-size and independent of the search
database size.

Software Implementation

Neuron-Miner is envisaged to be used as a data-mining
tool for neuroscientists to organize and visualize their data.
We also aim at augmenting them with tools for effective
comparative analysis spanning large heterogeneous, multi-
center databases. The hashing forest algorithm is available
on the server of the Max Plank Digital Library, München,
Germany and is usable through the Neuron-Miner appli-
cation which is available for downloading and installing

Fig. 9 Harvesting neuron-data from Spot and updating the database

on mobile devices supporting Android through https://
servicehub.mpdl.mpg.de/Neuron-miner.apk. In the follow-
ing section, we elaborate on the software engineering
aspects of the implementation of Neuron-Miner tool, both
from the Server and the Client Side.

Server side

In Fig. 8, we demonstrate the overall work flow of Neuron-
Miner, which is composed of the following steps:

1. The Graphical User Interface (App GUI layer) will call
the function upon user requested in the Business Layer.
The App GUI layer is visible to the user through screen
layout and interface of the system.

2. The Business Layer will send a request to a specific
web service and determines how data can be displayed,
created, stored, and changed.

3. The web service will use the input data and query
a record from the database. Web services provide a
method of communication between software applica-
tions running on different platforms and frameworks.

4. The database will send the selected records back to the
web service.

5. The web service will use the hashing forest based neu-
ron retrieval algorithm and send the desired result back
to the client.

We used the micro web framework Python-Flask to cre-
ate web services for facilitating data processing and added
an Android mobile application as a client. The framework’s
middle ware was defined as a RESTful web service, which
enables usage by several clients i.e. web applications and
mobile applications. Meanwhile, for data harvesting from
different sources, a Harvester routine was defined. Currently
the Harvester is only connected to the Spot (http://spot.
mpdl.mpg.de/), which is an on line data hub, where users
can share their data. A scheduler is defined in the program,

Fig. 10 Browsing neurons by animal species and searching for spe-
cific neurons. a navigating to the data profile section, b browse neurons
by animal species c list of all the neurons, search for a specific neurons
is possible through the search bar at the top

https://servicehub.mpdl.mpg.de/Neuron-miner.apk
https://servicehub.mpdl.mpg.de/Neuron-miner.apk
http://spot.mpdl.mpg.de/
http://spot.mpdl.mpg.de/
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which runs the Harvester everyday to retrieve data from the
Spot. Currently, a preliminary implementation of the Har-
vester routine is in place and its robust construction is work
in progress. Once harvesting is done, the Neuron-Miner
will parse the JSON file received from the Spot. Using the
SWC service (https://servicehub.mpdl.mpg.de/), which uses
Lmeasure, we can extract the morphological measurements
of each neuron. Finally, we save the data to the PostgreSQL
database and update the hash table for further analysis.
Figure 9 schematically illustrates the work flow of the har-
vester routine. The Harvester routine updates the hash-table
when a newly reconstructed neuron is added to database.

Client side

Mobile applications have their own limitations like, stor-
age capacity, memory and CPU availability. In this case, it
is better to assign the processing part to the web services
and just display the results on a mobile platform. The user
interacts with the presentation layer and sends a request
through the business layer to the web service. Figures 10
and 11 are sample screen shots of the user interface of the
Neuron-Miner tool. A user can perform browsing by choos-
ing animal species and searching for a neuron. By selecting
a neuron, the neuron’s profile with the most important mor-
phometric measurements will be presented. Finding similar
neurons is possible through the Find Similar Neurons button
in the interface as shown in Fig. 11a. The associated call-
back routine invokes retrieval algorithms at the middle ware
layers and retrieval using HF is performed on the server
side. The retrieved neurons are then sent back as response to
the client application. The compiled tool is available as an
Android application along with associated .apk installation
file generated with the Android SDK tool.

Fig. 11 Checking the profile of the neuron with some morphometric
measurements and finding similar neurons. a the profile of a neu-
ron, finding similar neurons to the selected neuron is possible through
clicking the button , b the list of similar neurons

Conclusions and Future Work

In this paper, we present Neuron-Miner, a tool for data-
mining from large heterogeneous neuroscientific image
databases. The tool is aimed to facilitate efficient mor-
phology - preserving search and retrieval of neurons. We
propose to use hashing methods to parse and encode the
neurons with binary similarity preserving code words gen-
erated by hashing functions. This is achieved by using
hashing forests, which uses unsupervised random forests
to extract compact representation of neuron morpholog-
ical features that enables efficient query, retrieval, and
analysis of neurons. The use of ensemble of trees and
hierarchical tree-structure makes hashing forests more
robust to noisy neuromorphological features (observed due
to inconsistent 3D digital reconstruction of neuron). We
establish that the proposed HF formulation has supe-
rior neighborhood approximation and retrieval performance
in comparison to existing generalized hashing methods
by quantifying the results over 31266 neuron reconstruc-
tions from Neuromorpho.org dataset curated from 147
different archives. To the best of our knowledge, this
is the first research to present hashing in neuroscientific
databases and demonstrates higher flexibility for reference-
based retrieval over existing alternative methods (Search by
Morphometry2015).

The proposed HF is developed to preserve morpho-
logical similarity while encoding the neuromorphological
space, which has better performance per bit than the com-
parative methods. The formulation for HF is generic and
it can be easily leveraged for other large-scale reference
based retrieval systems. The proposed formulation utilizes
inverse coding in HF, which helps avoiding pairwise com-
parisons across the database while retrieving, without com-
promising on accuracy. With the inclusion of oblique split
functions in conjunction with cluster validity measures, we
ensure that the native neighborhoods and clusters within the
neuromorphological space are maximally preserved during
hashing.

Towards the future work, the proposed Neuron-Miner
tool is a beta-version and is not entirely feature com-
plete. We will further customize and improve our mobile
client along with its portability beyond Android plat-
forms. Our future work towards improving efficiency of
hashing forests includes investigating improvements to the
node-scoring functions like introducing maximum-margin
approaches to improve parsing of the neuromorphologi-
cal space (Joly and Buisson 2011). Improvising scalability
of the HF is also a direction for future pursuit (Yu and
Yuan 2014). Further, we will introduce user defined search
criterion by allowing users to select substructures of inter-
est within a neuron and retrieve with a higher search
specificity.

https://servicehub.mpdl.mpg.de/
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Information Sharing Statement

The Neuron-Miner tool for search and retrieval described
in this paper is available as an app for Android OS 6.0
Marshmallow onwards and can be downloaded from https://
servicehub.mpdl.mpg.de/Neuron-miner.apk. After success-
ful installation of the app, it provides an interactive user-
friendly interface for 3D-visualization and search and
retrieval of neurons. The source code for hashing forests and
the neuromorphological features dataset is available through
Github upon acceptance of the paper.

Acknowledgments We thank Ajayrama Kumaraswamy, Computa-
tional Neuroscience Department Biology II, Ludwigs Maximillian
Universität München, Germany for insightful discussion in the early
conception of this work. We thank the assistance of Bastien Saquet
of Max Plank Digital Library, München, Germany in maintaining the
web-service. We would like to thank the Max Plank Digital Library,
München, Germany for providing computing resources for hosting the
Neuron-Miner software and making it publicly accessible.

Conflict of interests We have no conflict of interest to declare.

References

Albalate, A., & Suendermann, D. (2009). A combination approach
to cluster validation based on statistical quantiles. In 2009.
IJCBS’09. International Joint Conference on (pp. 549-555) Bioin-
formatics, Systems Biology and Intelligent Computing: IEEE.

Ascoli, G.A., Donohue, D.E., & Halavi, M. (2007). Neuromorpho.
Org: a central resource for neuronal morphologies. The Journal of
Neuroscience, 27(35), 9247–9251.

Costa, M., Ostrovsky, A.D., Manton, J.D., Prohaska, S., & Jefferis,
G.S. (2014). NBLAST: Rapid, sensitive comparison of neuronal
structure and construction of neuron family databases. bioRxiv,
p.006346.

Costa, L.D.F., Zawadzki, K., Miazaki, M., Viana, M.P., & Taraskin,
S. (2010). Unveiling the neuromorphological space. Frontiers in
Computational Neuroscience, 4, 150.

Desgraupes, B. (2013). Clustering indices. University of Paris Ouest-
Lab Modal’X, 1, 34.

Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high
dimensions via hashing. In VLDB 99(6), p. 518-529. Vancouver.

He, X., Cai, D., Yan, S., & Zhang, H.J. (2005). Neighborhood preserv-
ing embedding. In 2005. ICCV 2005. Tenth IEEE International
Conference on (Vol. 2, pp. 1208-1213) Computer Vision: IEEE.

Hotelling, H. (1933). Analysis of a complex of statistical variables into
principal components. Journal of educational psychology, 24(6),
417.

Joly, A., & Buisson, O. (2011). Random maximum margin hashing.
In 2011 IEEE Conference on (pp. 873-880) Computer Vision and
Pattern Recognition (CVPR): IEEE.

Kendall, M.G. (1948). Rank correlation methods. Biometrika, 44(1/2),
298.
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