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Abstract—Recently two lines of image retrieval algorithms demonstrate excellent scalability: 1) local features indexed by a vocabulary

tree, and 2) holistic features indexed by compact hashing codes. Although both of them are able to search visually similar images

effectively, their retrieval precision may vary dramatically among queries. Therefore, combining these two types of methods is expected

to further enhance the retrieval precision. However, the feature characteristics and the algorithmic procedures of these methods are

dramatically different, which is very challenging for the feature-level fusion. This motivates us to investigate how to fuse the ordered

retrieval sets, i.e., the ranks of images, given by multiple retrieval methods, to boost the retrieval precision without sacrificing their

scalability. In this paper, we model retrieval ranks as graphs of candidate images and propose a graph-based query specific fusion

approach, where multiple graphs are merged and reranked by conducting a link analysis on a fused graph. The retrieval quality of an

individual method is measured on-the-fly by assessing the consistency of the top candidates’ nearest neighborhoods. Hence, it is

capable of adaptively integrating the strengths of the retrieval methods using local or holistic features for different query images. This

proposed method does not need any supervision, has few parameters, and is easy to implement. Extensive and thorough experiments

have been conducted on four public datasets, i.e., the UKbench, Corel-5K, Holidays and the large-scale San Francisco Landmarks

datasets. Our proposed method has achieved very competitive performance, including state-of-the-art results on several data

sets, e.g., the N-S score 3.83 for UKbench.

Index Terms—Large-scale image retrieval, vocabulary tree, hashing, graph-based fusion, query specific fusion
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1 INTRODUCTION

LARGE-SCALE image retrieval based on visual features has
long been a major research theme because of many

emerging applications especially the web and mobile image
search. From the perspective of image representation and
methodology, most of the successful scalable image
retrieval algorithms fall into two categories: 1) quantized
local invariant features [24], [33] indexed by a large vocabu-
lary tree [25]; and 2) holistic features [2], [27] indexed by
compact hashing codes [35], [39]. These two approaches
demonstrate distinct strengths in finding visually similar
images. Vocabulary tree based methods are powerful in
identifying near-duplicate images or regions since local fea-
tures are particularly capable of attending to local image
patterns or textures. On the other hand, similar textures
may confuse these methods to present some candidates
which appear to be irrelevant to a query. By contrast, holis-
tic features such as color histograms or GIST features [27]

delineate overall feature distributions in images, thus the
retrieved candidates often appear alike at a glance but may
be irrelevant.

Fig. 1 shows two illustrative cases of a success as well as
a failure for either approach. The rotation invariant prop-
erty of SIFT features adversely affect the retrieval precision
of Fig. 1a by matching the curtain with the leaf, while it
accurately matches the visual patterns in Fig. 1b. On the
other hand, the GIST feature considering the overall layout
of the images successfully handles Fig. 1a, but fails to
deliver reasonable candidates in Fig. 1b. Therefore, the com-
plementary descriptive capability of local and holistic fea-
tures naturally raises the question of how to integrate their
strengths to yield more satisfactory retrieval results.

Although both lines of retrieval methods have been
extensively studied, there is not much research effort focus-
ing on the fusion of image retrieval methods using local and
holistic features. This is due to the fact that the feature char-
acteristics and the algorithmic procedures are dramatically
different. Generally the fusion can be carried out on the fea-
ture or rank levels, e.g., employing the bag-of-words (BoW)
representation [33] to combine different types of features in
a histogram [10], [44] or kernels [42], or combining the
ordered results from different retrieval methods by rank
aggregation [8], [16]. However, for a specific query image, it
is quite difficult to determine online which features should
play a major role in the retrieval. Moreover, it is even possi-
ble that there is no intersection among the top candidates
retrieved by the local and holistic feature based methods, as
shown in Fig. 1. This is very challenging for rank aggrega-
tion as it requires voting from multiple rank results. An
alternative is to train a classifier to predict the retrieval
quality using the similarity scores of top candidates. How-
ever, it is confronted by the issue of being sensitive to
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different queries and/or image databases, e.g., the distribu-
tions of similarity scores may be quite different for queries
with a couple or tens of relevant images. Therefore, one
may need to train such a classifier for each database to
somewhat “over-fit” the database statistics. These chal-
lenges prompt us to investigate a relatively principled way
to evaluate online the quality of retrieval results from meth-
ods using local or holistic features and then fuse them at the
rank level in an unsupervised way. It should also preserve
the efficiency and scalability of the vocabulary tree structure
and compact hashing mechanisms.

Without any supervision or relevance feedback for a
retrieval set, we assume that the consensus degree among
the top candidates reveals the retrieval quality. Therefore,
we propose a graph-based approach to fusing and rerank-
ing retrieval results given by different methods, where the
retrieval quality of an individual method is measured by
the consistency of top candidates’ nearest neighborhoods
[45]. Given a list of ranked results by one method, i.e., either
the vocabulary tree-based method or the hashed holistic fea-
tures, we first build a weighted graph using the constraints
derived from k-reciprocal nearest neighbors [30], described
later. Each edge between two nodes, i.e., two candidate
images, is assigned a weight based on the Jaccard similarity
coefficient [12] of two neighborhoods. Such weights reflect
the confidence of including the connected nodes into the
retrieval results. Then, multiple graphs from different cues
are fused together by appending new nodes or consolidat-
ing edge weights of existing nodes. After the candidate
images from various retrieval methods are fused via graphs,
we need to rank them as per the relevance and select the
most similar ones. This is achieved by conducting a link
analysis on the resulting graph to search for the PageRank
vector [28] or the weighted maximum density subgraph.
Although these two graph analysis methods are based on
different assumptions, they achieve very similar and consis-
tent results in our experiments. The precision of the result-
ing rank can be further improved by applying either link
analysis or weighted density maximization multiple times.

The main contribution of the proposed approach is on the
unsupervised graph-based fusion of retrieval sets given by
different methods, which has three merits: 1) the retrieval
quality specific to one query is effectively evaluated online
without requiring any supervision; 2) the fusion favors the
candidate images similar to a query in terms of different
complementary image representations; and 3) the method
can well cope with some singular cases such as little overlap
of top candidates from individual cues. We have validated

this method by fusing the retrieval sets based on the BoW of
local features and holistic features on four diverse public
datasets, the UKbench, Corel-5K, Holidays and the large-scale
San Francisco Landmarks datasets. The evaluation shows our
method consistently improves the retrieval precision and
compares favorably with the recent state-of-the-art results.

The remainder of this paper is organized as follows.
Section 2 reviews relevant work of vocabulary trees, com-
pact hashing, and their fusion. Section 3 presents the
framework of our graph-based and query-specific fusion
algorithm. Section 4 shows the experimental results on 4
public datasets and discussions. Concluding remarks are
given in Section 5.

2 RELATED WORK

Most of the scalable image retrieval algorithms fall in two
threads: indexing local features by a vocabulary tree and
hashing holistic features by compact binary codes. Their
strengths and limitations as well as possible ways to com-
bine them are briefly reviewed below.

2.1 Local Features with Vocabulary Trees

Image retrieval based on the BoW of local invariant features
[24], [33] has been significantly scaled up by using hierarchi-
cal vocabulary trees [25]. Such trees usually contain millions
of leaf nodes attached with inverted indexes. Since this is
essentially a very sparse BoW, each visual word only
appears in a small number of images indexed by inverted
files. Therefore, the retrieval of images containing particular
visual words is very efficient. Using a tree structure demon-
strates an excellent scalability in computation and precision,
although it is memory consuming. For example, to utilize
10 millions of visual words, we only need a tree with seven
layers and branch factor 10, which leads to merely 7 � 10
inner products to quantize one descriptor. Besides vocabu-
lary trees, product quantization [15] and its variants [9], [26]
provides an alternative way to fast search approximate
nearest neighbors of local invariant descriptors.

The vocabulary tree based approach has been further
improved from several perspectives. Since BoW does not
encode spatial information, [29] employs RANSAC as a
post spatial verification, which requires the SIFT features of
retrieved images to have a similar or consistent layout.
Chum et al. [4] applies the query expansion which reissues
the initial retrieval results as queries, so that the spatial con-
straints between the query image and each result can verify
each initial return. Jegou et al. [13] filters the local feature

Fig. 1. Retrieval results of two query images (in the green boxes) in the Corel-5K dataset, using a holistic feature (GIST) at the first row and in the
blue boxes, and BoW of local features (SIFT) at the second row and in the black boxes.
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matching by Hamming embedding and further improves
the retrieval accuracy by re-ranking with the weak geome-
try constraints. Wu et al. [40] constructs high-order features,
i.e., group of bundled features, and enforces robust geomet-
ric constraints within each group. Zhou et al. [47] indexes
relative spatial positions among local features in an image,
which is both efficient and effective to identify false matches
of local features between images. Zhang et al. [46] quantizes
spatial offsets among local features through the geometry-
preserving visual phrases (GVP) and outperforms the BoW
method following by a RANSAC verification.

Since images are essentially delineated by local invariant
features, these methods are effective in handling image scal-
ing, rotation, and partial occlusions, leading to a very high
precision in near-duplicate image retrieval. However, if no
near-duplicate image regions exist in the database, large
areas of similar textures may confuse these retrieval meth-
ods and lead to irrelevant candidate images and unsatisfac-
tory user experience. In addition, the rotation-invariant
property may also cause confusion in some cases (see
Fig. 1a), which can be potentially corrected by considering
holistic features.

2.2 Holistic Features with Compact Hashing

Hashing-based methods focus on fast approximated nearest
neighbors (ANN) search to deal with the dimensionality
issue. As introduced in [35], holistic features such as color
histograms, GIST [27], or image classification outcomes [18],
are indexed by locality sensitive hashing (LSH) [1], which
uses random projections to map data to binary codes. This
method results in highly compact binary codes (e.g., 128
bits), which can be efficiently compared within a large data-
base using the Hamming distance. LSH has been extended to
other similarity measures such as Mahalanobis distance [19]
and p-norm distances [5]. These data-independent hashing
methods may need long binary codes for a high precision in
ANN, which adversely affects the efficiency. In contrast,
recent research have focused on data-dependent hash func-
tions. Many effective methods have been proposed, such as
the spectral graph partitioning and hashing [39], Restricted
Boltzmann Machines (RBMs) [32], semi-supervised hashing
(SSH) [37] incorporating the pairwise semantic similarity
and dissimilarity constraints from labeled data, and PCA
hashing with iterative quantization [11]. Particularly, as sug-
gested in [11], a random rotation on the PCA-projected fea-
tures, which is optimized by iterative quantization, achieves
surprisingly good performance. Supervised hashing with
kernels [21] has also been proposed to leverage supervised
information into hash function learning. Anchor Graph
Hashing (AGH) [20], [22] has been proposed to use neighbor-
hood graphs which reveal the underlying manifold of fea-
tures, leading to a high search accuracy. Recently, fusion of
features in a hashing framework has been investigated to
boost the accuracy by leveragingmultiple cues [23], [34], [43].

These methods leveraging compact hashing of holistic
features are efficient in computation and memory usage.
The computational complexity of hashing methods is usu-
ally sub-linear or even constant when using single or multi-
ple hash tables. Even exhaustive searching is much faster
than traditional methods owing to the compact binary codes
and the Hamming distance metric. However, holistic

features tend to be less invariant than local features, and are
in general more sensitive to image transformations induced
by illumination changes, scaling and pose variations. In
practice, their focus on aggregated image statistics rather
than fine details results in candidate images that appear
roughly similar, but the retrieval precision is often lower
compared to local feature based methods.

2.3 Fusion of Local and Holistic Feature Based
Image Retrieval

Towards better retrieval performance, it is appealing to com-
bine the strengths of complementary cues such as local and
holistic features. To our best knowledge, there are not much
research efforts addressing how to achieve this efficiently in
the literature, although there have been several attempts com-
bining such cues either at the feature or rank level. Combin-
ing local and holistic cues at the feature level makes it hard to
preserve the efficiency and scalability induced by the vocabu-
lary tree structure and compact hashing. Rank aggregation
[8] is a straightforward solution to fusing them at the rank
level, however, it requires voting frommultiple rank lists and
is unable to handle two lists with an empty intersectionwhich
does occasionally occur for results returned by these two
distinct retrieval approaches. In either way, the key issue is
how tomeasure and combine the cues whose effectiveness or
importance varies dramatically among different query
images. The closest inspiring work to ours includes [17], [30]
and [41] which address different problems, i.e., reranking
one retrieval result by k-reciprocal nearest neighbors [30] or
reranking text-based retrieval results by visual similarities
employing the PageRank algorithm [28]. In contrast, we con-
centrate on how to fuse the retrieval results efficiently based
on local and holistic features to enhance the precision.

3 PROPOSED APPROACH

3.1 Overview

To fuse the ranked retrieval results given by different
methods, the critical issue is how to automatically measure
and compare their quality, since no supervision and user
relevance feedbacks are available online. The similarity
scores of candidates may vary largely among queries, espe-
cially for the vocabulary tree based method, and are not
comparable between different retrieval methods. Thus, a
reasonable idea is to measure the consistency among the
top candidates returned by one retrieval method as the
retrieval quality specific to one query. Therefore, for each
query image, we construct a weighted undirected graph
from the retrieval results of one method, where the
retrieval quality or the relevance is modeled by the weights
on the edges. These weights are determined by the Jaccard
similarity coefficient of two neighborhood image sets. Then
we fuse multiple graphs to one and perform a localized
PageRank algorithm or find the weighted maximum den-
sity subgraph centered at the query image to rerank the
retrieval results. As a result, the fused retrieval results tend
to be consistent in terms of different image representations.

3.2 Graph Construction

Denote q the query image, d an image in the databaseD, and
i either the query or a database image. Given a similarity
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function Sð�; �Þ between images and a retrieval method, we
represent retrieval results for a query as a sorted list of can-
didate images with associated similarity scores fðd; sÞg
where s ¼ Sðq; dÞ. We define the neighborhood of an image
i as NkðiÞ or N 0

�ðiÞ, where NkðiÞ includes the images that are
the top-k retrieved candidates using i as the query and
N 0

�ðiÞ includes those with s > �. We further define the recip-
rocal neighbor relation for i and i0 as

Rkði; i0Þ ¼ i 2 Nkði0Þ ^ i0 2 NkðiÞ: (1)

As discussed in [16], [30], being the reciprocal neighbor is a
reliable indication that two images are visually similar w.r.t.
a particular image representation in a retrieval method.

For each set of retrieval results, we construct a weighted
undirected graph G ¼ ðV;E;wÞ centered at q where the
nodes are the images (q and d 2 D) and two images i; i0 are
linked by an edge ði; i0Þ 2 E if they satisfy Rkði; i0Þ as recip-
rocal neighbors. The attached edge weight w is defined as
the Jaccard similarity coefficient Jði; i0Þ between the neigh-
borhoods of i and i0:

Jði; i0Þ ¼ jNkðiÞ \Nkði0Þj
jNkðiÞ [Nkði0Þj (2)

wði; i0Þ ¼ aðq; i; i0ÞJði; i0Þ; (3)

where j � j denotes the cardinality and aðq; i; i0Þ is a decay
coefficient related to the number of hops to the query: let
dðq; iÞ be the length of the shortest path in G between q and

i; we define aðq; i; i0Þ ¼ a
maxðdðq;iÞ;dðq;i0ÞÞ
0 , and set a0 ¼ 0:8 in all

experiments. The range of edge weights is from 0 to 1, with
Jði; i0Þ ¼ 1 implying that these two images share exactly the
same set of neighbors, in which case we assume the two
images are highly likely to be visually similar. The query q’s
reciprocal neighbors form the first layer in the graph whose
reciprocal neighbors are expanded to the second layer w.r.t.
q, so on so forth. The graph construction continues until
either: 1) the number of nodes jV j reaches a given maximum
number (i.e., the maximal number of images to retrieve), or
2) no more reciprocal neighbors can be found, or 3) the
weights of edges become smaller than a given threshold.
An illustrative example is shown in Fig. 2. Note, for holistic
feature based retrieval methods, we can also employ the
similarity score and the neighborhood N 0

�ðiÞ in place of
NkðiÞ to define the reciprocal neighbor relation and Jaccard
similarity coefficient.

3.3 Graph Fusion

After obtaining multiple graphs Gm ¼ ðV m;Em;wmÞ from
different retrieval methods, we fuse them together to one
graph G ¼ ðV;E;wÞ with V ¼ [mV

m, E ¼ [mE
m, and

wði; i0Þ ¼ P
m wmði; i0Þ (with wmði; i0Þ ¼ 0 for ði; i0Þ =2 Em), see

Fig. 3. Though the rank lists or the similarity scores in differ-
ent methods are not directly comparable, their Jaccard coef-
ficients are comparable as they reflect the consistency of
two nearest neighborhoods. Without any prior, here we
have to treat multiple retrieval methods equally by simply
summing up the edge weights.

3.4 Graph-Based Ranking

Given a graph G (either obtained from a single retrieval
method or by fusing multiple ones according to Section
3.3), we propose two solvers to rerank the candidate
images, i.e., by performing the local PageRank algorithm
on the edges or finding the weighted maximum density
subgraph inG.

Fig. 2. An example of graph construction, where the query q links to its
reciprocal neighbors (i.e., q and the green discs in the green zone). d is a
candidate at the first layer with its reciprocal neighbors in the blue zone,
whose Jaccard coefficient to q is 3=7 (# of nodes in the intersection divided
by # of nodes in the union of the green and blue zones). The radius of the
disc representing a node indicates the influence of decay coefficient a.

Fig. 3. Fusion of two graphs where the green and yellow graphs are derived from two different retrieval methods.
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3.4.1 Ranking by the PageRank

Since the notion of well-connected nodes in G also reveals
the visual consensus degree of images, we conduct a princi-
pled link analysis [28] on the whole graph G to rank accord-
ing to the node connectivity. This graph G is treated as a
network. Since this network is built by considering the
retrieval relevance, naturally a node is more important or
relevant if it has a higher probability to be visited.

We define the jV j � jV j transition matrix P as Pii0 ¼
wði; i0Þ=degðiÞ for ði; i0Þ 2 E, and 0 otherwise. It is row-sto-
chastic, i.e., each row sums to one. Consider the assumption
of the intelligent surfer model [31], whereby a surfer proba-
bilistically hops from node to node along the edges of G,
according to the transition matrix P. Occasionally, with a
small probability 1� b, the surfer jumps according to a
fixed distribution over nodes p, which we set as pq ¼ 0:99
and uniform otherwise, where q is the index of the query
node. We denote pti as the probability for the surfer to be at

node i at a time t and pt ¼ pti
� �

. The equilibrium state of p,

where a higher probability reflects a higher relevance to the
query, is obtained by the query dependent PageRank vector
as a stationary point using the power method:

ptþ1 ¼ ð1� bÞpþ bPT pt: (4)

Once p has converged, the images are ranked according to
their probabilities in p.

3.4.2 Ranking by Maximizing Weighted Density

As the visual similarity of two images from one or more rep-
resentations has been encoded in the edge weights of G,
another natural idea is to search for the subgraph G0 � G
containing q of a weighted maximum density, as follows:

G0 ¼ argmax
G0¼ðV 0;E0;wÞ�G: q2V 0

P
ði;i0Þ2E0 wði; i0Þ

jV 0j : (5)

In other words, we prefer to choose nodes which can con-
tribute more weight to the subgraph. Since edge weights are
correlated with the retrieval quality, this approach selects
images with potentially a higher visual similarity.

We solve Eq. (5) approximately by a greedy algorithm
that grows G0 iteratively, starting from G0 ¼ ðfqg; ;; wÞ. We
first compute node degrees degðiÞ ¼ P

i0 wði; i0Þ for each
node i linked with q by accumulating weights from its con-
nected edges. Then the node with the largest weight is
selected to be incorporated in G0. After that, we consider all
nodes connected to the current G0, and select the one which
can introduce the largest weight to G0 (ties broken arbi-
trarily). Fig. 4 shows one example of determining the candi-
date nodes of a graph G0. G0 is enlarged by applying this
procedure iteratively, until a user-specified number of
images is retrieved. These nodes are ranked according to
their time of insertion into G0. The advantage of this ranking
method is its efficiency. The computational complexity
mainly depends on the connectivity (i.e., the average
valence of all nodes) but not the number of nodes in G, since
we only check the nodes connecting to the current G0. Thus
this method obtains ranking results within a similar time
for different sizes of G. Although this method is not

guaranteed to find a global optimum, our experiments in
Section 4 suggest that this method achieves accurate and
consistent ranking results.

3.5 Reranking for Multiple Times

The ranking results on the fused graph by either the Pag-
eRank or graph density maximization may still be further
refined and rectified. We propose to further apply the
graph-based reranking on the new retrieval result. Specifi-
cally, the new ranking of candidate images is used to build a
new graph by following the same strategy as in Section 3.2.
Then the newly-built graph is further re-ranked using either
PageRank or density maximization to obtain an updated
rank. The graph construction and the reranking are con-
ducted alternately. In each iteration, the connectivity of the
new graph has been further regularized and constrained by
the reciprocal nearest neighbors. Therefore, the overall accu-
racy is expected to be improved.

This scheme has the following benefits. In the proposed
graph-based reranking, we employ the Jaccard coefficient
based on the reciprocal neighbor relations to measure the
edge weights between images. Thus, after the reranking, if
we construct a new graph based on the new rank list in the
same way, the weighted graph density around the query
(i.e., the sum of edge weights over the number of edges cen-
tered at the query), usually increases (it may remain the
same for singular cases such as no reciprocal neighbors at
all in the initial retrieval set). In addition, the images intro-
duced as the second layer in the first round are configured
as the first layer in the second round, which provides an
opportunity to re-examine these second layer images by
measuring the consistency among top candidate images to
boost the retrieval precision. Therefore, it is intriguing to
experiment whether performing the graph-based reranking
again on the new graph will further improve the retrieval
performance. We empirically find that conducting the
graph-based reranking iteratively always improves the
retrieval accuracy, even based on a single initial retrieval
set. Nevertheless, the gain of the iteration over a single
round of graph-based reranking depends on the initial
reranking performance (or the graph density after the first
reranking). For example, if the initial graph is already accu-
rate or converged, using multiple times of our reranking
may not significantly improve the accuracy compared to
applying it once. In our experiments, we improved the NS-

Fig. 4. Illustration of expanding G0 (the green zone). Candidate nodes
are connected toG0, and are denoted by dash lines.
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score by 0.05 on UKbench [25], precision by 1:5 percent on
Corel-5K [7] and mAP by 0:2 percent on Holidays [13]. This
suggests in practice we may need to perform graph-based
reranking several times to reach a stable state.

3.6 Complexity and Scalability

The complexity of each power method iteration in the Pag-
eRank algorithm is OðjEjÞ. In our experiments, the node
valence in G is around 4-10 and the power method con-
verges within 10 iterations. The greedy search for the maxi-
mum density subgraph is on average two times faster then
the PageRank. The computational cost incurred by the pro-
posed fusion methods is quite small given the top candi-
dates retrieved by different methods. In particular the
running time of the proposed fusion is about 1ms regardless
of the database size, and the overall query time is less than 1
second for over a million database images in our experi-
ments. The memory overhead is determined by the number
of reciprocal neighbors between images in the database
which have to be pre-calculated and stored offline the same
as [30]. The experiments in Section 4 demonstrate the scal-
ability and efficiency of the original image retrieval methods
are retained in the fusion method.

4 EXPERIMENTS

We first describe the datasets (Section 4.1) and the methods
(Section 4.2) compared in the experiments, then present the
detailed evaluation results on each dataset (Sections 4.3-
4.6), followed by the discussions about some issues and lim-
itations (Section 4.7).

4.1 Datasets

We evaluate the proposed approach on four public datasets:
the UKbench, Corel-5K, Holidays and San Francisco Landmarks
(SFLandmarks). In theUKbench and Holidays, relevant images
are near-duplicates or the same objects/scenes to the query,
while, the Corel-5K involves category-level relevant images
without any near-duplicate ones. SFLandmarks is a realistic
large-scale dataset with a variable number of relevant
images for different queries. We employ the performance
measures from the original papers of these datasets and
demonstrate the query specific fusion improves consider-
ably for all these diverse datasets.

UKbench [25] includes 2,550 different objects, and each
one has four images taken from different viewpoints and
illuminations. All 10,200 images are indexed as both data-
base images and queries. The retrieval performance is mea-
sured by 4� recall at the first four retrieved images, which
is referred as the N-S score (maximum is 4).

Corel-5K [7] consists of 5,000 images that fall in 50 catego-
ries, such as beach, bird, jewelry, sunset, etc., each contain-
ing 100 images. We use a leave-one-out method to query all
5,000 images, i.e., querying every image with the remaining
4,999 images as the database images. The performance is
evaluated by r-precision, i.e., the precision for the top r can-
didates, averaged over the 5,000 queries.

Holidays [13] contains 1491 personal holiday photos
undergoing various transformations. There are 500 image
groups where the first image of each group is the query.

The performance is measured by the mean average preci-
sion (mAP) in a leave-one-out fashion.

SFLandmarks [3] is a city-scale image database, which
contains 1.06M perspective central images (PCIs) and 638K
perspective frontal images (PFIs). They are generated from
street-view panoramic pictures with building labels. A set
of 803 images taken by camera phones is provided as
queries. The performance is evaluated by the average recall
rate of correct buildings versus the number of candidates.

4.2 Methods

The baseline local and holistic feature based retrieval meth-
ods are denoted by the VOC, GIST and HSV (described
below), for which we apply our graph construction (Section
3.2) on their retrieval results, obtaining GVOC, GGIST, and

GHSV. The two proposed ranking methods are denoted by
Graph-PageRank and Graph-density to generate the fused
retrieval sets, which are compared with the rank aggregation,
and a learning based fusion method, referred as SVM-fusion.
Applying the Graph-density to an individual baseline obtains
the VOC-graph, GIST-graph, and HSV-graph, respectively.

VOC. We employ a variant of vocabulary tree based
retrieval [25], [38] in which up to 2,500 SIFT features are
detected for each image using the VLFeat library [36]. We
employ a seven layer tree with a branch factor 10. The tree is
trained on 50 K images in the validation set of the ImageNet
Challenge [6] for UKbench, Corel-5K and Holidays, and on the
PCIs and PFIs, respectively, for SF Landmarks, following [3].

GIST and HSV. For each image we compute the 960-
dimensional GIST [27] descriptor and the 2,000-dimensional
HSV color histogram (using 20� 10� 10 bins for H;S; V
components). We then apply a PCA hashing method [11] to
compress those to 256 bits. Retrieval is based on exhaustive
search using the Hamming distance.

Rank aggregation.We use the algorithm described in [8] to
combine the local and holistic retrieval results. Same as our
proposed method, it does not need any supervision.

SVM-fusion. We train a linear SVM classifier that predicts
which retrieval method is most appropriate for a given
query, by computing a 20-dimensional input feature con-
sisting of the top-10 normalized similarity scores for two
retrieval methods. The SVM outputs binary indications
about which method may achieve a higher precision. This is
motivated by the observation [30] that a sharp degradation
of the similarity scores may imply a confident retrieval and
a long tail distribution may imply a less confident one. We
employ a five-fold cross-validation, where at the test time,
we output for each query the ranked list of images from the
method with a predicted higher quality.

In our graph-based fusion, the main parameter k, deter-
mining reciprocal neighborhoods, shall reflect the expected
number of relevant images and the database size [30]. We
set it to five for UKbench and Holidays, 15 for Corel-5K, and
30 for SFLandmarks, which is not sensitive to small varia-
tions. Regarding the parameter selection, we suggest small
values (e.g., 5) for datasets of nearly duplicate images, such
as UKbench, and large values (e.g., 15) for classification data-
sets or large-scale datasets. The motivation is to construct
graphs with sufficient nodes for fusion and reranking. With
a small search range, nearly duplicate images can provide
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enough candidates for analysis, while othertypes of datasets
usually need a large search range to ensure this.

4.3 The UKbench

To show the effectiveness of our graph fusion method, we
have conducted extensive experiments and provided insight
analysis on this widely used UKBench dataset. We first com-
pare our approach and the baselines with the state-of-the-art
methods, see Table 1. We consider the fusion of the VOC and
HSV retrievals, as GIST yields poor results here (N-S = 2.21).
Since the relevant images in this dataset undergo severe illu-
mination and pose variations, VOC performs substantially
better than holistic features. This imbalance limits the perfor-
mance of rank aggregation and SVM-fusion. Moreover, if we
employ a cross-dataset SVM-fusion, which is learned on the
Corel-5K and tested on the UKbench, the performance (N-S =
3.37) is much worse than using VOC only, showing that
SVM-fusion does not generalize well across datasets. The
graph-based fusion improves the baselines considerably to
N-S = 3.77, which outperforms the state-of-the-art perfor-
mance N-S = 3.68 in [16]. The rank aggregation was
employed to combine 19 vocabulary trees [16] to achieve N-S
= 3.68, in contrast, we fuse just two types of features. This
improvement significantly decreases the relative error rate.
Indeed, this excellent performance verifies the power of fus-
ing local and holistic feature based retrievalmethods.

A very interesting observation is that applying the Graph-
density ranking on individual rank results can also substan-
tially improve the retrieval precision (i.e., 0.14 by the VOC-
graph and 0.11 by the HSV-graph). Further, the two new
ranked results can be fused by the graph-based fusion

again. This iteration further improves the N-S score of each
baseline method, as shown in Fig. 5. After this procedure
converges to a stable state for each baseline, i.e., N-S ¼ 3.73
for VOC and 3.35 for HSV, we eventually achieve the N-S
score to 3.83 by the Graph-PageRank and 3.82 by the Graph-
density after combining these two stable baseline ranks.

The performance of the Graph-PageRank and Graph-den-
sity are consistently close on the UKbench, as shown in
Fig. 5. The reason is that on the UKbench the graphs are
usually well-connected because of the near-duplicate can-
didates. Thus the PageRank solution by analyzing the
whole graph is similar to applying the greedy search. In
general, both proposed methods improve the state-of-the-
art retrieval precision remarkably on this dataset, even
without requiring a geometrical verification which is both
time consuming and makes strong physical assumptions
about near duplicates.

Fig. 6 shows that our graph fusion method is robust to
the random noise. In this experiment, we add random
noise to the rank results of one feature (e.g., the VOC). Spe-
cifically, we replace the retrieved results with randomly
assigned values. Then these corrupted rank results are
fused with the results from the other feature (e.g., HSV).
When the ratio of the random noise increases from 0 to 100
percent, the N-S score of the corrupted rank results
decreases to 1. Since rank aggregation is based on the vot-
ing scheme, such corrupted results adversely affect the
fusion accuracy. Fig. 6 shows that rank aggregation yields
much worse results than the baselines. Our graph fusion
method is able to online evaluate the quality of the
retrieval results from individual feature. Thus, it is very
robust to such noisy retrieval results. Fig. 6 shows that its
accuracy is constantly better than either of the baselines. In
fact, even with 100 percent noise applied on HSV (VOC),
the N-S score after fusing with VOC (HSV) is still around
3.54 (3.28), which is the same accuracy as applying our
method on a single VOC (HSV) graph. It demonstrates that
the corrupted ranks are detected and omitted automatically
because of our online assessment scheme. In addition, we
also add random noise to both features, as shown in Fig. 6.
In this case, the N-S score of fusion results inevitable drop
to 1 when using 100 percent noise ratio which means both
features are fully corrupted. However, our proposed fusion
methods still significantly improve the retrieval accuracy
until 60 percent noise ratio for both features, while rank
aggregation fails to improve the VOC feature in such set-
ting. This further demonstrates the efficacy of our methods
in handling random noise of retrieved results.

4.4 The Corel-5K

In this dataset, each query is associated with one hundred
relevant images, so we report the precision instead of recall

TABLE 1
Comparison of N-S Scores on the UKbench Dataset with Recent Retrieval Methods and Other

Rank Fusion Approaches

J�egou
et al. [16]

Qin
et al. [30]

HSV VOC
[38]

HSV
graph

VOC
graph

Rank
aggregation

SVM
fusion

Graph
PageRank

Graph
density

Iterative
ranking

3.68 3.67 3.17 3.54 3.28 3.67 3.47 3.56 3.76 3.77 3.83

Fig. 5. N-S scores on the UKbench dataset, after iteratively building
graphs and applying the Graph-density on each baseline method until
converge, then the two new baseline retrieval sets are combined using
the Graph-PageRank and Graph-density.
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for the top r queries, i.e., the corresponding r-precision
curves in Fig. 7 and the top-1 precision in Table 2.

We fuse the retrieval results of the VOC and GIST on this
dataset. The top-1 precision 54:62 percent of the Graph-den-
sity is about 8 percent higher than either baseline method. It
validates that the Jaccard similarity well reflects the
retrieval quality and the graph fusion combines the strength
of both baseline methods. Graph-PageRank does not achieve
such a good precision in the top-3 retrievals. However, it
becomes comparable to Graph-density after retrieving more
images (see Fig. 7), because Graph-PageRank pursuits the
optimization of the whole graph, while the Graph-density
greedily finds the most relevant candidate. Thus the latter
method may achieve a better performance for the first few
retrievals.

The rank aggregation method improves the precision
when there are some common retrieved images in both of
the top candidate lists, since their ranks are promoted by
the voting. However, in some cases the two rank lists may
not have any overlap at all (especially for the top-1 candi-
date), then the aggregation cannot help.

SVM-fusion effectively improves the top-1 precision to
51:34 percent. However, this performance is kind of too
optimistic since the number of relevant images are about
the same for all the queries in the Corel-5K and both the
VOC and GIST work equally-well, which may not hold for
other databases such as the UKbench.

On this dataset, we also demonstrate that our method is
also able to effectively fuse multiple results, i.e., GIST, VOC,
and HSV. As shown in Fig. 8, HSV alone achieves top-1 pre-
cision 54:22 percent, which is much better than both GIST
and VOC. Therefore, traditional unsupervised fusion meth-
ods may adversely affect the retrieval accuracy of HSV. In
contrast, applying our graph fusion method significantly
improves the performance of using each individual feature,
i.e., top-1 precision 62:0 percent after the fusion of these
three types of features. We also apply the iterative ranking
on each baseline and then fuse them accordingly. The
retrieval precision is marginally improved from 62:0 to 63:5
percent. Such improvement is not as significant as UKbench.
The reason is that images in the same category of Corel-5K
do not have strong visual similarity as UKbench does, since
Corel-5K is mainly designed for the image classification
instead of retrieval. Therefore, its graphs of nearest neigh-
bors are relatively more noisy than those on UKbench. None-
theless, iterative ranking still achieves the best retrieval
precision among all compared methods. As this dataset is
usually used for the validation of classification methods,
state-of-the-art classification methods have achieved a high
accuracy using many sophisticated features and supervised
learning methods (e.g., relevance feedback). However, we
merely employ three basic features and K-Nearest Neigh-
bors as the baseline, since our goal is to demonstrate that
this proposed graph fusion also works effectively for such a
general purpose dataset, besides the datasets for near-dupli-
cate retrieval (e.g., UKbench).

4.5 The Holidays

We also evaluate our proposed method on the INRIA
Holidays dataset [13]. Different from the UKbench and
the Corel5K datasets, each image in the INRIA Holidays
may only have 1-2 relevant images. Still, we observe a
consistent performance gain as on the other datasets. As
shown in Table 3, the Graph-PageRank and Graph-den-
sity improve the mAP of the two baselines, i.e., VOC
77.5 percent and HSV 62.6 percent, to 84.56 and 84.64
percent, respectively, which are also among the state-of-
the-art. The improvement over VOC is more than 7 per-
cent on the mAP.

In contrast, the rank aggregation and the SVM-fusion
methods only marginally improve over the VOC by 1 per-
cent. The reason is that the mAP of the HSV is about 15 per-
cent lower than VOC. Such a large difference can degrade

Fig. 6. From left to right: we add random noise (from 0 to 100 percent) to the rank results of VOC, HSV, and both, respectively. In the first two
cases, the corrupted results are fused with the the other feature without noise (HSV or VOC). We compare the baselines with fusion results
of the rank aggregation, the density-based and PageRank-based graph fusion methods. In the third case, we fuse two types of corrupted results.

Fig. 7. The scope(r)-precision curves for the Corel-5K dataset.
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the fusion performance because the two resulted ranks may
have few common retrieved images.

Again, the Graph-PageRank and Graph-density achieves
very similar accuracy, i.e., only 0.08 percent difference of the
mAP. This is also consistent with the results in UKbench.
These two methods interpret the same graph from different
perspectives, while the solutions are comparable.

On the Holidays dataset, iterative ranking achieves
slightly better mAP than the Graph-density, i.e., 84:91 per-
cent, which indicates that applying multiple times of
reranking is similar to applying it once. This is owing to the
small graph structures in this dataset, i.e., 1-2 relevant
images for many queries. Therefore, applying our method
once already effectively discovers stable structures for these
graphs, whose performance is among the state-of-the-art.

4.6 The SFLandmarks

We study the scalability of the proposed fusion method on
this real-world large-scale dataset. Concerning the online
retrieval efficiency, we perform the VOC retrieval first, then
compute the holistic feature based retrieval using the GIST
among the top-50 candidates returned by the VOC. Since
the query is not included in the database, we approximately
determine its reciprocal neighbors based on the Jaccard sim-
ilarity of the top candidates to q. Then, the two graphs of

VOC and GIST are constructed and fused to generate the
retrieval results. Please note that although the GIST graph
is built upon the VOC results, by performing the graph
fusion and ranking, the method enforces the retrieval
results to be consistent in terms of different cues. Thus,
this is essentially different from using the GIST to rank the
VOC’s results which actually degrades VOC’s performance
on the SFLandmark. In terms of memory usage, we only
store the image id of the top-50 nearest neighbors in the
VOC for the 1.7M database images which costs 340 MB
additional memory, a small fraction of the memory
requirements for storing the inverted indexes. Although
we adopt some approximations for both the VOC and
GIST based retrieval, our experiments show the fusion
effectively improves the performance on this large-scale
problem. Moreover this is a practical setting that easily
integrates with the vocabulary tree based retrieval systems.

Following the same experimental setting as in [3], we
report the recall rate averaged over the 803 query images
versus the number of candidates on the PCIs and PFIs sepa-
rately, see Fig. 9. The recall is in terms of retrieving at least
once the correct building among the top r candidates, which
means multiple correct hits count as a single hit. Using the
GIST-graph to re-rank the top-50 candidates returned by the
VOC actually adversely affects the accuracy in the top-3

TABLE 2
The Top-1 Precision (in Percent) on the Corel-5K Dataset

VOC GIST VOC-graph GIST-graph SVM-fusion Graph-PageRank Graph-density Three features

46.66 46.16 51.50 50.72 51.34 51.76 54.62 62.0

Fig. 8. The scope(r)-precision curves for the Corel-5K dataset when fus-
ing results from three features.

TABLE 3
Comparison of the mAP (in Percent) on the Holidays Dataset with Recent Retrieval Methods

and Other Fusion Approaches

J�egou et al.
[13]

J�egou et al.
[14]

HSV VOC
[38]

Rank
aggregation

SVM
fusion

Graph
PageRank

Graph
density

81.3 83.9 62.60 77.50 78.62 79.04 84.56 84.64

Fig. 9. Retrieval results on the SFLandmarks. Recall versus number of
top database candidates of (a) query 803 images in the 1.06M PCIs and
(b) query 803 images in the 638k PFIs.
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Fig. 10. Three sets of retrieval results from the UKbench (top), Corel-5k (middle), and SFLandmarks (bottom) datasets, respectively. Top-4
candidates are shown for the fusion results (3rd row in the purple boxes) of a query (in a green box on the left), using holistic features (1st row
in the blue boxes), and local features (2nd row in the black boxes).
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retrievals, which is probably due to the fact that local invari-
ant features are generally more reliable than GIST in finding
near-duplicate images under viewpoint changes. However,
such holistic features still provide complementary informa-
tion. As shown in Fig. 9, the fusion with the GIST based
retrieval improves noticeably upon the VOC, leading to top-
1 recall rates of 62:14 percent for the PCIs and 48:08 per-
cent for the PFIs, which compare favorably with the method
using oriented local features without GPS in [3].1 This vali-
dates our proposed approach as a practical retrieval method
in a large-scale setting.

Illustrative fusion results on three test datasets are shown
in Fig. 10, from which we observe that the query specific
fusion integrates the strengths of local or holistic features
adaptively.

4.7 Discussions

We discuss the running time, parameter sensitivity, imple-
mentation issues and limitations here:

1) The online query in the proposed method is very
efficient, since the nearest neighborhoods are pre-
computed offline and the Hamming distance match-
ing is optimized by the Intel SSE4.2 assembly. The
average query time tr in millisecond (not including
the feature extraction) and the breakdown are
reported in Table 4. Our VOC baseline takes around
half second to findmost similar images in one million
candidates. GIST and HSV need 0.1 second, without
using hashing tables. Graph fusion only needs to con-
sider the retrieved results given by the baselines, so
the computational overhead is negligible.

2) This proposed graph fusion method only has one
important parameter, i.e., k for the k-reciprocal near-
est neighbors. As mentioned in Section 4.2, we use
smaller k values for UKbench and Holidays and larger
values for Corel5K and SFLandmarks. The reason is
that small-scale datasets or datasets including near-
duplicates to queries usually result in a well-con-
nected graph even with a small k, while a large k
may bring some noise. In contrast, large-scale data-
sets or datasets containing many relevant similar
images may need a large search range to build a
graph. Fig. 11 shows the N-S scores on the UKBench
dataset when changing the value of k. When k ¼ 1,
the method degenerates to the baseline since only

the nearest neighbor of each image (i.e., itself) is con-
sidered. When k > 4 the N-S score starts to decrease
gradually. In general, the retrieval performance is
not sensitive to small variations to k.

3) For certain queries, it is possible neither local nor
holistic features are capable of finding relevant can-
didates, thus no reciprocal neighbors nor any graph
can be found and built. In such cases, we just arbi-
trarily pick up the retrieval results given by the
VOC or the holistic feature based retrieval without
any reranking. Another corner case is that the fused
graph does not have enough nodes, i.e., candidates
for retrieved images. In this situation, we consider
the results from the relatively better baseline as
additional candidates to be appended after the
graph fusion results. For datasets with near-dupli-
cate relevant images such as UKBench, we choose
VOC since it is generally better than holistic feature
based methods, while we can choose either one for
other datasets.

4) Note that the voting-based methods are especially
useful when the majority of results from different
baselines are consistent, i.e., resulting ranks share
many common candidates. In this case, our graph
fusion and reranking may not necessarily outper-
form the voting scheme. However, the voting meth-
ods are not adaptive to individual queries. For
example, we find it is possible that there is no inter-
section among the top candidates retrieved by the
local and holistic feature based methods. Therefore,
voting scheme is not a proper choice, which has been
demonstrated in the comparison with the rank
aggregation method.

5) As the nearest neighbor information is required,
dynamical insertion and removal of database
images require some additional treatments. One
possible solution is to always keep a sufficiently
large representative image set to approximate the
neighborhood relations, which we leave for the
future work.

6) This proposed method fuses image retrieval results
in an unsupervised way. Therefore, it avoids some
potential issues for supervised methods, such as
over-fitting and lack of manual annotations. More-
over, this fusion method can be easily reproduced by
other researchers and may serve as a plug-in in prac-
tical image retrieval systems.

Fig. 11. The N-S scores on the UKBench dataset when changing
parameter k.

TABLE 4
The Average Query Time (in ms) and the Breakdown

on the Test Datasets

Dataset # of images VOC HSV/
GIST

Graph-
fusion

tr
(ms)

UKbench 10,200 85 1 <1 87
Corel-5K 4,999 76 <1 <1 78
Holidays 1,490 72 <1 <1 73
PCI-SFLandmark 1,062,468 645 103 <1 749
PFI-SFLandmark 638,090 467 64 <1 532

1. This statement is based on the highest recalls on the green curves
in Fig. 7b and 8b in [3].
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5 CONCLUSIONS

In this paper, we proposed a graph-based query specific
fusion of retrieval sets based on local and holistic features.
In our proposed method, the retrieval quality of one set of
candidate images is measured online by the consistency of
the neighborhoods of top candidate images, which is spe-
cific to individual queries. Then the retrieval sets are repre-
sented as graphs and interpreted by conducting a link
analysis. Such a query-specific and graph-based fusion
retains the computational efficiency of the vocabulary tree
based retrieval, and at the same time considerably improves
the image retrieval precision on four diverse public data-
sets, including a large-scale one with over a million images.
This approach does not require any supervision or rele-
vance feedback, has few parameters and is easy to imple-
ment. These merits warrant further investigating the graph-
based fusion of multiple cues for image retrieval.
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