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Abstract—Detecting deception in interpersonal dialog is chal-
lenging since deceivers take advantage of the give-and-take of
interaction to adapt to any sign of skepticism in an interlocu-
tor’s verbal and nonverbal feedback. Human detection accuracy
is poor, often with no better than chance performance. In this
investigation, we consider whether automated methods can pro-
duce better results and if emphasizing the possible disruption
in interactional synchrony can signal whether an interactant is
truthful or deceptive. We propose a data-driven and unobtru-
sive framework using visual cues that consists of face tracking,
head movement detection, facial expression recognition, and
interactional synchrony estimation. Analysis were conducted on
242 video samples from an experiment in which deceivers and
truth-tellers interacted with professional interviewers either face-
to-face or through computer mediation. Results revealed that the
framework is able to automatically track head movements and
expressions of both interlocutors to extract normalized mean-
ingful synchrony features and to learn classification models for
deception recognition. Further experiments show that these fea-
tures reliably capture interactional synchrony and efficiently
discriminate deception from truth.

Index Terms—Deception detection, expression recognition, face
tracking, gesture detection, interactional synchrony.
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I. INTRODUCTION

IMPLICIT in all interpersonal interactions is the need to
gauge whether an interlocutor is truthful and authentic in

his or her presentation of self. The expectation of truthfulness,
in fact, is one of the foundations of human discourse [36].
Yet, notwithstanding the importance of this largely outside-
of-consciousness assessment process, voluminous research has
shown that humans, unaided by technology, are very poor
at detecting deception [1], [8], [78]. Average detection accu-
racy is estimated at 54%, or only slightly above chance, and
detection of deception specifically, as opposed to detection of
truthfulness, is approximately 47% [8]. Those accuracy esti-
mates have included both lay and professional judges, although
some recent evidence points to experts achieving higher accu-
racy rates under interviewing conditions more characteristic of
their usual professional setting and task [11].

One reason cited for humans’ poor detection in interpersonal
dialog is that deceivers take advantage of the give-and-take
of interaction to adapt to any signs of skepticism in the
interviewer’s verbal and nonverbal feedback. Deceivers adjust
their messages to make their responses more plausible and
their demeanor more credible [9], [82]. That same give-
and-take, however, has the potential to offer subtle clues to
deception through the disruption of interactional synchrony.
Interactional synchrony refers to interaction that is nonran-
dom, patterned, and aligned in both timing and configuration
of kinesic behavior (i.e., head, face, body, and limb movement)
with the rhythms and forms of expression in the vocal-verbal
stream. It is considered a key marker of interaction involve-
ment, rapport, and mutuality. Synchrony may take the form
of simultaneous synchrony, in which two or more people’s
behaviors mimic or match one another (e.g., similar postures
and facial expressions) in the same time frame and behavioral
changes occur at the same junctures. This is speaker-listener
synchrony. Synchrony may also be concatenous, in which one
person’s behavior is followed by similar behavior from the
next speaker (e.g., each using rapid nodding while speaking).
This serial form of synchrony captures speaker-speaker and
listener–listener coordination.

A. Hypothesis

The current investigation explores both simultaneous and
concatenous synchrony. It is premised on the possibility that
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engaging in deception disrupts interactional synchrony and
may therefore be a clue to its presence. Practitioners have
suggested using rapport-building techniques or interactional
synchrony as an effective method for detecting deception: in
FBI interviews with terrorists and in police investigations [43],
[56], [71]. However, few systematic studies of rapport, coordi-
nation, synchrony or reciprocity have examined the effects of
synchrony on deception or vice versa [12], [29]. The emphasis
typically has been on interviewers using interactional syn-
chrony to promote more verbal disclosures and confessions
by interviewees.

Our approach is a novel perspective on the role of syn-
chrony in revealing deception in that we are focusing on the
interaction between the interviewee and interviewer rather than
only the interviewee side of the equation. Deception has been
shown to be a cognitively and emotionally taxing activity,
especially when the stakes are high and the consequences
of being discovered are serious [40], [77]. Interactional syn-
chrony entails a very close linkage among behavioral, physi-
ological, and emotional manifestations such that synchrony is
positively correlated with rapport and empathy between inter-
locutors; conversely, incongruent feeling states and behavioral
states can disrupt coordination, synchrony, and perceived rap-
port [48]. Mimicry, named the chameleon effect [3], [14],
[27], is a nonconscious tendency to imitate others’ verbal and
nonverbal behaviors whereas we reserve the term “mirroring”
for visually based static behaviors and not dynamic ones. In
contrast, interactional synchrony is the smooth meshing in
time of the rhythmic, patterned activity of two interlocutors
and thus is a better fit for the behaviors we are interested
in here because of the temporal component. If the behaviors
involved are visual ones and are identical in form (e.g., one
person’s posture is just like the partner’s), the pattern is mirror-
ing. If he behaviors instead reflect some temporal, rhythmic,
and smoothly meshed coordination between interactants, the
pattern is called interactional synchrony.1 Because deceivers
may experience various negative emotional states (or at least
emotional states that diverge from those of an interlocutor)
and because deceivers may be too preoccupied with con-
structing plausible verbal responses to attend to or coordinate
their nonverbal behaviors with another, we expect interactional
synchrony to be attenuated and disrupted when intervie-
wees are deceptive as compared to when they are truthful.
Even skilled deceivers may be unable to counter this decre-
ment in interactional enmeshment because conscious efforts
to produce synchronous behavior patterns through mirroring
another’s posture or matching another’s degree of animated
gesturing and facial expressions may appear “inauthentic” and
“off” [35]. Deception thus may be one cause of poor inter-
actional synchrony and dissynchrony may be one sign that
deception is taking place.

Our hypothesis tested this possibility. Specifically, we
expected that interviews with deceivers are less synchronous
than interviews with truth-tellers. Initial research using manual
coding to evaluate synchrony suggested that deception alters

1This definition of synchrony is differentiated from mimicry, mirroring, and
other forms of behavioral adaptation described in [10]

the level of synchrony between deceivers and receivers. The
modality used for the questioning and the type of question-
ing also affected the outcome [87]. Our goal is to determine
whether computer vision techniques can expand on previ-
ous research by automatically detecting synchrony behavior,
which can then be used to distinguish truthful from decep-
tive individuals. Testing this hypothesis required developing
the computer vision methods to assess simultaneous and con-
catenous synchrony. Those methods are a central focus of the
current work.

B. Moderators

Little is known about whether moderator variables alter
the patterns of synchrony. Two possible factors were inves-
tigated here: the modality of interaction [face-to-face (FtF)
or video-conferencing] and sanctioning of the deception.
Video-conferencing is becoming a widespread medium for
communication and sanctioning may alter how deception is
behaviorally expressed [30]. Few experiments have examined
video-conferencing and instead compare FtF interactions to
those in text-only modalities [34].

In addition, few experiments directly compare the situa-
tion where the experimenter has sanctioned the deception to
unsanctioned deception [32] and instead tend to focus on one
or the other. In many experiments, participants are told by
an experimenter to deceive their partner which may result
in less nervousness, guilt, and dissynchrony. In other exper-
iments, participants are allowed to choose whether or not to
lie, which results in a lack of random assignment, such that
only confident or skilled deceivers may choose to deceive.

Our experiment examines both of these moderators, modal-
ity, and sanctioning. We asked the following research
questions: 1) is the synchrony between interviewer and inter-
viewee affected by the modality they are using (FtF or
video-conferencing) and 2) does the sanctioning of the decep-
tion (sanctioned or unsanctioned by experimenter) affect the
synchrony between interviewer and interviewee?

C. Method

In overview, testing data were derived from a cheating
experiment in which some subjects cheated during a trivia
game with a confederate and some did not, but all were
encouraged to appear as credible as possible when interviewed
about the game by expert interviewers from the Department
of Defense [30]. Thus, cheaters were expected to be deceptive
and noncheaters, to be truthful. This kind of deception has
been considered high stakes by other researchers [49] and the
subjects in our paper were reminded that they were in vio-
lation of the university’s honor code during their interviews.
They knew they could face disciplinary action for this act and
thus, were under pressure to evade detection. All interviews
were videotaped. Separate cameras captured the interviewer
and the interviewee and the time-aligned videos were ren-
dered in split screen form. Modality and sanctioning were
experimentally manipulated such that some participants were
interviewed FtF and others were interviewed via Skype. Some
were told that the experimenters were aware of their cheating
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but that they were to deny it to the interviewer (sanctioned
version) whereas others received no such explicit approval of
their cheating (unsanctioned cheating).

The videotaped interviews were analyzed using computer
vision methods for automated analysis. The autonomous track-
ing of interactional synchrony cues are proposed to deal with
the cases where manual codings are not available. Also, as
video is increasingly available (e.g., video data through the
internet), manual coding would not be a suitable method
for synchrony tracking because coding is time- and labor-
intensive. Autonomous nonverbal cues extraction significantly
improves such situations. Moreover, it is difficult for a person
to track synchrony across multiple cues (e.g., shakes, nods,
smiles, and gaze) in real time. Thus, the main considerations
of proposing autonomous strategies to code the synchrony
feature are to: 1) save the coding process time and labor, espe-
cially when the applications are large-scale, e.g., web-based
video dataset; 2) improve the deception detection accuracy by
investigating different nonverbal cues, its fusion and feature
selection methods; and 3) investigate the factors which may
influence the synchrony feature. For example, the modality
difference, computer-mediated communication (CMC) versus
FtF, deceiver sanctioning, the type of nonverbal cues, the
confessor groups, etc. Considering the computer vision algo-
rithms, constrained local models are used for detailed face
tracking and head gestures [21], [65]. Our focus in this paper
is on the automated tracking of head gestures and expressions
of both the subject and the interviewer, extracting normal-
ized meaningful synchrony features, and learning classification
models for deception recognition.

Our major contributions are as follows.

1) Combining our developed face tracking, head gesture
detection, and expression recognition modules, a fully
automatic visual cue extraction system is introduced and
synchrony information is modeled to detect deception.

2) Insights are put into investigating how synchrony influ-
ences the interaction of the two participants. Single-
channel visual cue features are examined to show how
they contribute to the classification of truth or deception.
In-depth analysis are conducted for designing deception
detection systems.

3) The deception detection problem is formulated as a clas-
sification problem. Feature selection toward synchrony
features and two-layer classifier design significantly
improve the detection accuracy from 54%, which is what
a typical unaided individual can expect, to 74%.

The rest of the paper is organized as follows: Section II
reviews relevant work on deception detection, face tracking,
head gesture, and facial expression recognition. Section III
presents the framework of our method. Section IV reports
experimental results on two databases of different modalities.
Section V concludes this paper.

II. RELEVANT WORK

A. Deception Detection

Deception is defined as a message knowingly transmitted
to create a false impression or knowledge on the part of

the receiver [9], [76]. Early research focused on cardiores-
piratory measures to detect evidence of lies in the form of
the polygraph [47], [50]. In recent years, scholars have also
added other physiological data such as neurological activity to
identify liars [46].

The other main approach of detecting deception is to
investigate nonverbal and verbal behavioral indicators of
deception. For instance, there are many speech cues, such
as pauses, voice pitch, interruptions, delay of response, and
response length that are associated with deceit [75], [79],
[80]. Verbal content indicators have included such features
as the amount of detail, logical inconsistencies, spontaneous
corrections, or other cues [26], [80]. Nonverbal behaviors that
have been examined for indications of honesty or mendacity,
have included eye contact, blinking, head movement, posture
changes, gestures, and leg movements [5], [13], [38], [61],
[64], [70], [73], [88]. Two ways in which these indicators
reveal veracity is through signaling arousal and emotional
states: “the emotional arousal hypothesis suggests that decep-
tion produces various emotional states which may influence
nonverbal signals” [76]. Indicators may also reflect other pro-
cesses such as cognitive load. Understudied is the extent to
which observed behaviors reflect the social interaction between
interlocutors rather than internal states of senders. This latter
aspect motivated the current paper.

Measurement of nonverbal behavior can be manual, non-
computational methods, or automatic computational meth-
ods [25], [52]. Early research relied on trained observers’
rating, counting, or timing behaviors, which is the behav-
ioral coding method [45]. This type of method is tedious and
requires significant investment of labor and time. Moreover,
there is no fixed rule for those methods to segment, annotate,
and label observations, which may lead to confusion. Hence,
researchers have turned to automatic techniques to measure
individual behaviors and to assess the degree of similarity
between the dynamic nonverbal behaviors of dyadic partners.
These methods rely on motion-tracking devices, image pro-
cessing, and video-based computer algorithms [13], [64], [73].

B. Face Tracking

Face tracking is a fundamental problem in computer vision.
The face is a nonrigid and pose-variant object, which increases
the difficulty in tracking. Moreover, illumination, facial expres-
sion, and occlusion are other factors that make the problem
even harder.

There are two types of methods dealing with face-tracking
problems. One is to extract local features and use standard
trackers to trace the variation of the features. The other is to
directly approximate the shift between the consecutive frames
of face images where the local features are the same. In
extracting features, the active shape model (ASM) [20] is one
of the most successful methods so far. It sets up a series of
landmarks which capture the face profile. Those landmarks
extract gradient or pixel value and do a local search to find
the proper locations along the face profile. A linear shape
space is trained to constrain those landmarks in a face shape.
The active appearance model [17] is another well-known
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Fig. 1. Sample snapshots from tracked facial data showing a subject (left)
and an interviewer (right). Red dots represent tracked facial landmarks (eyes,
eyebrows, etc.), while ellipse in top left corner depicts the estimated 3-D head
pose of the subject; top right corners show the detected expressions, and head
gestures for subject and interviewer.

algorithm to capture face profile. Besides the shape land-
marks, it imports face appearance and attempts to minimize
the error between the reference appearance and the searched
appearance. Nevertheless, the global shape or appearance may
encounter problems of local variations. The constrained local
model developed by Cristinacce and Cootes [21] represents a
face as a combination of shape and local feature templates.
It is fitted by optimizing the shape parameters to match the
image’s local appearances to the templates. Improved meth-
ods are proposed based on those three above models [18],
[19], [54], [85].

C. Head Movement Detection and Facial Expression
Recognition

Detection of head gestures has a long tradition including
work by Kapoor and Picard [42] who proposed a method to
recognize head nods and head shakes based on two Hidden
Markov Models trained and tested on a 2-D dataset from an
eye gaze tracker. Kawato and Ohya [44] developed a method
using “between eyes” templates. Recently, sequential analysis
tools have become more and more important in gesture recog-
nition. For instance, a conditional random field is imported
in Quattoni et al.’s work [60]. They model the head motion
as a temporal sequence and establish a graphical structure
to analyze the behavior. Moreover, due to the complexity of
real problems, Hidden-state CRFs, and Dynamic CRFs are
gradually employed in analyzing time series data [55], [68].

Facial expression recognition is another important topic in
the communities of computer vision. The previous work can
be categorized into two classes, image-based methods and
video-based methods [31], [59]. Image-based methods neglect
the dynamic characteristics during an expression sequence.
However, video-based methods deal with the dynamics to
classify expression. Many experiments have demonstrated the
importance of the facial dynamics [6], [15]. In video-based
expression recognition, temporal segmentation of expression
action events and the representation of the dynamics are two
major problems. Torre et al. [69] used condensation to trace
the local appearance dynamics and Cohn [16] applied key
point tracker to represent the dynamics.

Fig. 2. Workflow of deception detection framework consisting face tracker,
head pose detector, expression detector, synchrony feature extractor, and
deception detection classifier.

D. Interactional Synchrony

Synchrony is the dynamic and reciprocal adaptation of
behaviors between interactive partners [25]. It is reflected
by the relevant features of the interactive motion, i.e., head
motion, facial expression, etc. Although using synchrony to
evaluate the deceptiveness of statements is a rather new
technique, an initial investigation using human coding has sug-
gested that disruptions in synchrony can distinguish between
deceivers and truth-tellers. It is perhaps due to their cognitive
load or their violation of conversational norms [29].

To evaluate synchrony, correlation is one of the mainstream
methods [2], [4], [7]. After extracting the motion or expression
features, a time-lagged cross correlation is applied over the
two sequential single-channel features with certain time slot
window and thus the response indicates the degree of syn-
chrony. Another strategy is to use recurrence analysis [62],
[67]. For a given two time series, every vector with delay t is
compared with every vector in the second time series. A recur-
rence matrix is created. By thresholding the distance between
the two vectors, the degree of synchrony is provided. The third
type of methods are spectral methods. Some methods focus
on dealing with the two time series’ relative phase [58], [63].
Others focus on measuring the overlap between the movement
frequencies of the two interactants [24], [61].

III. METHODOLOGY

We have developed a framework that is capable of ana-
lyzing synchrony and detecting deception. The framework
includes tracking facial movements module, facial expression
recognition module, and head movement detection module.
The sample interface is shown in Fig. 1. Based on the
single-channel features extracted by those modules, i.e., head
nodding, head shaking, smile, etc., we designed the temporal
causality like strategy to generate synchrony features. Using
the higher level features, a data-dependent learning-based clas-
sifier is designed to differentiate deceptive groups from truthful
groups. The whole flowchart is shown in Fig. 2. Each of the
modules is illustrated in detail in the following subsections.
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A. Multipose Face Tracking

Face tracking is a challenging problem. The shapes of faces
change dramatically with various identities, poses, and expres-
sions. Furthermore, poor lighting conditions may cause a low
contrast image or cast shadows on faces, which adversely
affect the performance of the tracking system. We have devel-
oped a robust face tracker [41] based on ASMs [20] together
with a nonlinear shape manifold.

ASMs are landmark-based models that attempt to learn a
statistical distribution over variations in shapes for a given
class of objects. The ASMs consist of a global shape model
and a set of local landmark detectors

s ≈ s̄ + ��λ. (1)

The global shape model captures shape variations. As (1)
shows, s stands for a predefined n facial landmark positions,
s = {x1, y1, . . . , xn, yn}. s̄ is the mean shape from face train-
ing dataset. � is the corresponding Eigen matrix depicting the
face variation directions. Any shape s is approximated by the
mean shape s̄ and the variation from certain directions. �λ is
the varying coefficients along the Eigen basis directions.

The local profile models capture the local appearances
around each landmark point and are used for selecting the best
candidate landmark positions. We adopt a logistic regression-
based learning method [86] to obtain weights w, b for template
detectors

p(vi = 1|si, I) = 1

1 + exp(wf + b)
, f = �(I, si). (2)

In (2), we formulate the possibility of locating a candidate
landmark position as p(vi = 1|si, I) knowing the facial image
I, the ith landmark candidate position si. Here, vi is a random
variable indicating whether the candidate position is in the
positive location. f is feature vector extracted by �, which is
the feature extraction strategy. In general, histogram of gradi-
ent (HoG) [22] and local binary pattern (LBP) [81] are widely
used feature extractors in appearance detection. To locate the
facial features in varying poses, we learn seven clusters of
shape models, each covering a range of face poses. At each
frame the system traverses the nonlinear facial shape mani-
fold looking for the landmark configuration whose shape and
texture at each landmark yield the minimum distance between
what is observed in the image and the reconstructed shape.
The learned model allows the complex, nonlinear shape mani-
fold to be approximated in a piecewise linear subregions. Each
subregion defines a hyper-ellipsoid on this manifold. Facial
shapes of similar pose are constrained to lie in the same linear
subspaces.

Fitting ASMs in every frame is computationally expensive
and causes jittering. To solve this problem, we track the fea-
tures using the KLT tracker [66] across consecutive frames.
KLT tracker can register two local features and compute the
displacement of the feature by minimizing the intensity match-
ing cost. We track landmarks in successive frames using a sum
of squared differences point tracker and running the relatively
“expensive” step of face search only periodically to prevent any
error accumulation. This scheme allows us to have a measure of

Fig. 3. Example of the coded feature on one haar-like dynamic feature
unit uij.

tracking success (confidence) for each landmark, so we can have
early detection and correction when drifting from the target.

B. Head Movement and Facial Expression

From the landmark positions in each frame, we are able to
estimate the 3-D poses (pitch, yaw, and tilt) and detect the
relevant head gestures (head shaking, nodding, head toward
front, and head turning away). To estimate the face pose, a
linear partial least squares (PLS) regression model [37] is built
for all linear regions in the shape manifold. This regression
model takes the x and y coordinates of the 79 landmarks as
input, and predicts the pitch, yaw and tilt angles

A = XB + F∗. (3)

Matrix A represents the head pose parameters pitch, yaw. and
tilt. Matrix X is concatenated by all the landmarks’ coordi-
nates. B is the mapping matrix which we pursue and F∗ is
the residual matrix indicating the variation. The head nod is a
gesture in which the head is tilted in alternating up and down,
and head shake means that the head is turned left and right,
repeatedly in quick succession. Therefore, by differentiating
the pitch value and yaw angles in each frame, we are able to
detect the head nod and shake, respectively.

A facial expression classifier is also built to detect facial
expressions such as smiles [84]. We use a ranking-based
framework of facial expression analysis, which can recognize
expressions and estimate its intensity. Our method is based on
an observation that the pair-wise ordinal relationship along the
temporal domain is obvious, despite the lack of quantitative
measurement of intensity. Therefore, it is relatively easy to
model the intensity estimation as a ranking problem.

Our framework consists of three components as follows.

1) Facial appearance feature representation. We use the
haar-like features to represent facial appearance due to
its efficiency in facial appearance representation [74].
Then the dynamic haar-like feature is encoded into
binary codes as illustrated in Fig. 3. The original
haar-like dynamic feature uij, is extracted by canoni-
cal haar-like detector located at the position of (i, j) in
the facial image. Such unit feature uij are then translated
into binary code as Fig. 3 shows. The output binary code
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Algorithm 1 Expression Feature Organization
1: Input: a subject with expression Ei and Ej.
2: Output: all pairwise instances {(xk, xk+1)}
3: repeat
4: label intensity of Ei and Ej separately from apex to the

start state.
5: concatenate two labeled sequence as: SEi =

R(IEi,Apex) ≺ R(IEi,start) ≺ R(IEj,start) ≺ R(IEj,Apex).
6: based on {SEi}, build pairwise instances {(xk, xk+1)}

satisfying R(xk+1) ≺ R(xk).
7: until all pairwise instances xk, xk+1 are visited.

is denoted as feature vector x, which is the input of the
weak classifiers ht(x).

2) Ordinal pair-wise data organization. It describes how
to organize the data properly for the ranking model.
Detail procedure is demonstrated in Algorithm 1. R(I)
indicates the ranking score of instance I. Given a sub-
ject with expression Ei and Ej, which is represented by
score in (0, 1), we first label the expression in ampli-
fying order. Then given two generated feature vectors
xk and xk+1, after the classification score returning, we
arrange the two feature vectors in the same order of Ei

and Ej according to the classification scores, which are
also ranged in (0, 1).

3) Building ranking model, which is the core component.
Due to a large number of haar-like features, we use the
RankBoost [33] to select a subset of haar-like features
to build a final strong ranker in

H(x) =
T∑

t

αtht(x) (4)

where ht(x) is a weak ranker based on the following loss
function:

L(H) = min
∑

x0,x1

exp

(
T∑

t

αt (ht(x0) − ht(x1))

)
(5)

t is the index and T is the total number of the weak classi-
fiers. αt is the weight for each weak classifier contributing to
the strong classifier. We choose exponential function as our
loss function. In (5), x0 and x1 are feature vectors extracted as
binary coded features in Fig. 3, which belong to the same
category, e.g., both of the vectors are indicating smiling.
The objective function aims at minimizing the classification
error of samples in the same group categorized into different
groups.

In most learning models, the Vapnik–Chervonenkis (VC)
dimension grows linearly in the number of parameters. If the
training size is not large enough, the learning model may result
in overfitting. Regularization is needed in this situation to pre-
vent such a phenomenon [57]. l1 regularization has shown its
advantages in vision and learning areas [39], [57], [84]. To
further improve the performance, we introduce the l1 based
regularization into the RankBoost. The final ranking score
given by a ranking function can be used for expression inten-
sity estimation and recognition. The loss function imports the

Fig. 4. Sequences cross correlation scheme.

constraints such that those positive dominating weak classifiers
are sparse, as shown in (6)

L(H) = min
∑

x0,x1

exp

(
T∑

t

αt (ht(x0) − ht(x1))

)

s.t.
T∑

t

αt ≤ r, αt ≥ 0. (6)

To summarize, we first extract the haar-like feature and
encode it into binary codes. Then by arranging the binary
codes into ordinal pair-wise data, we use Rankboost to train
a strong ranker to indicate the intensity of these emotions.

C. Synchrony Features

The interaction of people in a dialog is directly indi-
cated by head gestures and facial expression. However, the
inner property of such interaction should be depicted by
more profound features. The subtle and significant way peo-
ple influence each other can be seen through their nonverbal
synchrony. Synchrony refers to similarity in rhythmic quali-
ties and enmeshing or coordination of the behavioral patterns
of both parties in an interaction [12]. Such synchrony can
either be simultaneous or concatenous. In [29], synchrony
can be indicated by nodding or shaking, facial mirroring, etc.
Providing pairs of interview videos, we can capture head nod-
ding or shaking and facial expressions (especially smiling)
in videos by our proposed facial tracking and facial expres-
sion detection methods. Based on such single-channel features,
we intend to check the simultaneous response from both two
people in an interview.

Individual feature vectors of two interview videos from one
interviewer and one interviewee are viewed as two corre-
sponding data sequences. We get large response while doing
correlation over two sequences if the two sequences have sim-
ilar magnitude at the same position, which may measure the
simultaneous response. If two sequences have similar mag-
nitude at different position, we take a time sliding window
to compensate the time delay and calculate their correlation.
Cross correlation is a standard method of estimating the degree
to which two sequences are correlated. The cross correlation
of two signals with a latency d is defined as

C(d) =
∑

i

(
zi − −

z
) (

yi−d − −
y
)

√
∑

i

(
zi − −

z
)2

√
∑

i

(
yi−d − −

y
)2

(7)
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where zi and yi are the i th element of sequence z and sequence

y,
−
z and

−
y are the mean value of sequence z and sequence y.

In order to accommodate concatenous synchrony, we divide
two sequences into overlapped time slots, as shown in Fig. 4.
The two sequences are required to have the same length. Then,
we equally divide each sequence into m time slots. Starting
from either of the sequences at current time slot, we take
[ − t, t] time slots to calculate their correlation with the current
time slot. The largest cross correlation response is chosen as
the current time slot’s feature value. We repeat such procedure
for every time slot in a sequence. As a result we obtain a cross
correlation based synchrony feature vector with length m.

D. Feature Selection and Deception Detection

Once we obtained effective single-channel feature, e.g.,
head-nodding, smiling, looking forward, asynchrony feature
is formed by combining those single-channel features. The
single-channel features are normalized, and then a weighted
vector concatenation is applied to generalize a uniform feature
vector. The weights for different single-channel features can
either be tuned by k-fold cross validation or empirical setting.
Such combination may not lead to optimal feature representa-
tion. Moreover, in the single-channel feature extraction step,
noise may be introduced. Inside the combined feature, different
feature elements may be correlated. Therefore, we chose the
most effective feature elements out of the original synchrony
feature vector to remove noise and redundancy.

This feature selection was achieved by genetic algorithm
(GA). In this process, we randomly set the initial feature
selectors consisting of 0/1 elements, in which 0 indicates
not selecting and 1 means selecting. In each generation, such
random feature selectors would crossover and mutate to gen-
erate new descendants. Then among the whole population,
the algorithm will choose the top candidates which achieves
the best performance in the classification task. Such iteration
repeats until the accuracy cannot be increased or the maximum
iteration limit is reached.

Obtaining the effective and precise selected synchrony fea-
tures, we formulate the deception detection problem as a
classification problem. We intend to differentiate the truthful
group from the deceptive group, which is a two-class classi-
fication problem. Since the training volume is not large and
the aim is to minimize the misclassification rate, we maximize
the margin of those two groups and thus choose support vector
machine (SVM) [72] as our first layer classifier. In addition,
inside the deceptive group, it can be further classified as the
sanctioned cheating group in which people are allowed to lie
before they take the examination dialog, and the unsanctioned
cheating group in which people are not provided with any
information about deceiving. Similarly, we adopt SVM as our
second layer classifier. In such way, we designed a multilayer
SVM classifier for the deception detection task.

As a summary, in this section, we have introduced a face-
tracking module to trace the head movement. Based on the
head movement, we further set up the head pose detec-
tion module and facial expression detection module to obtain
gesture and emotion features. Such single-channel features

are not efficient enough for deception detection. We built a
causal relationship-based synchrony feature as higher level
feature. After feature selection, we designed a two-layer SVM
classifier to achieve the deception detection task.

IV. EXPERIMENTS

In this section, we first introduce the experimental protocols,
and then show the tracking, gesture, and expression detection
results as the input for the deception detection. Further, differ-
ent single-channel features are examined and the feature selec-
tion algorithm is investigated to improve the recognition accu-
racy. Finally two-class and three-class classification output is
illustrated, which reveals the advantages of our framework for
analyzing synchrony and hence discriminating truth.

A. Experiment Settings

The analysis began with creating a database of 242
videotaped interviews of 121 interviewer–interviewee pairs.
Interviewees were students who participated in a trivia game
and in some cases were induced by a confederate to cheat.
All participants were then interviewed by expert interviewers
about the game interaction and whether they cheated during
the game. Approximately half of the interviews were con-
ducted over Skype and the other half were conducted FtF to
produce two modality conditions, CMC and FtF. Since a few
of the pairs are incompletely recorded, we selected 100 out
of 121 pairs of videos as our training and testing data. These
video pairs vary from 4500 frames to 15 000 frames. Although
video pairs’ lengths are different, we ensure inside each video
pair, the interviewer sequence, and interviewee sequence keep
the same length, which allows using a fixed number of time
slots to analyze the video sequences.

To generate the synchrony feature, we set up certain width
of time window. Each window has the same size, which are
180 frames comprised of 6 s prior to the current frame and 6 s
following the current frame. Such window is tunable in prac-
tice. However, since too large window size may mediate the
synchrony pattern and too small window size cannot capture
significant pattern in synchrony, such window size is tuned
according to the experimental performance. In our case, we
modified the window size, generated the synchrony feature,
and tested it on randomly chosen video segments. If the per-
formance improved, we modified the the window size again.
This process was repeated until the window size reached it
optimum value. As our video pairs have length above 4500
frames, we set the window size to overlap a half in consecu-
tive manner so that the procedure lasts for the entire sequence
and generate a holistic synchrony feature.

B. Tracking, Gesture, and Expression Detection

In the synchrony detection step, we extracted head nodding,
head shaking, smiling and head direction (looking forward
or looking away). The visual result is shown in Fig. 6.
More tracking results are shown in Fig. 10. Head motion
can be detected by analyzing pitch, yaw, and tilt as demon-
strated in Section II-B. Pitch depicts nodding action and yaw
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Fig. 5. Synchrony pattern illustration in pitch and yaw angle curves. Left: Pitch curve of a pair of interviewer and interviewee. Right: Yaw curve of a pair
of interviewer and interviewee. x-axis stands for frame number and y-axis represents angle degree (pitch or yaw).

Fig. 6. Face tracking and expression, head pose estimation visual result. Left
Top: Initial face detection and landmark initialization. Left Bottom: Score plot
of expression (smile or not smile) recognition. Right: Facial landmark tracking
result and head pose estimation(depicted by pitch, yaw, and tilt).

reveals shaking action. The nodding and shaking synchrony
patterns are shown in Fig. 5. Based on such single-channel
features, we further combine the interviewer’s feature vector
with interviewee’s feature vector to form higher level features.
A correlation-based method is adopted to identify synchrony.
Then a two-layer classification scheme is designed to sepa-
rate three classes (truthful group, sanctioned cheating group,
and unsanctioned cheating group). We first classify the truthful
group from the cheating group using nonlinear SVM classi-
fier, which is a two class classification task. Then based on
the result of the first step, we continue to classify the cheat-
ing group into sanctioned cheating group and unsanctioned
cheating group by another nonlinear SVM classifier. During
the feature selection part, at each step we separately train a
feature selector using GAs. The feature selector is an efficient
way to promote the performance in recognition task because
the raw features may have noise or redundancy.

C. Evaluation of Synchrony Features

Before using all features, different types of features should
be investigated to find the effective ones for classification. Our
strategy is to leave each single feature out of the whole feature
vector and then test the recognition accuracy. We also iden-
tify the single feature’s recognition accuracy and visualize the

TABLE I
DETECTION ACCURACY EVALUATION OF FOUR FEATURES, “NOD,”

“SHAKE,” “SMILE,” AND “LOOK FORWARD.” “ALL BUT ONE” MEANS

THAT ALL FEATURES ARE USED EXCEPT THE ONE OF THAT COLUMN.
“SINGLE” MEANS USING ONLY THE FEATURE OF THAT COLUMN

feature vector in plots to see the separability of each of the
four types of features (head nodding, head shaking, smiling
or not smiling, and look forward or look away). During this
step, we examine the average precision of classifying three
classes, i.e., truthful, sanctioned cheating, and unsanctioned
cheating classes, to evaluate each feature. Table I shows the
average precision of different feature combinations over the
three-class classification.

Table I shows that in CMC, when the feature “Nod” or
“Shake” is excluded from the whole feature vector, the per-
formance is higher than the rest. When the feature “Smile” or
“Look forward” is excluded, the performance drops. For FtF,
the trend is opposite: “Nod” and “Shake” are more significant
in classification. When testing each single feature’s accuracy,
it appears that “Look forward” and “Smile” are more accu-
rate than “Nod” and “Shake” for CMC. And again, for FtF
modality, “Nod” and “Shake” achieves higher accuracy than
“Smile,” where “Look forward” is not applicable in the FtF
dataset. The reason is for FtF data, interviewer and interviewee
sit FtF. The look-forward feature should be defined by their
local head coordinates. But only one camera was capturing the
scene, only allowing the global camera coordinate. Thus, the
frontal face cannot be obtained by the camera coordinate.

In Fig. 7, the vertical dotted lines separate the plot into four
regions representing the four separate features. The first col-
umn indicates the feature “Nod,” the second one is the feature
“Shake,” the third is the feature “Smile,” and the last one is the
feature “Look forward.” We plot the average feature vector of
each group in the subplots. The feature vector is 800 numbers
long, of which each region is with length 200 numbers. With
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Fig. 7. Mean feature vector patterns of three groups. Left: Truthful group’s mean feature vector pattern. Middle: Unsanctioned cheating group’s mean feature
vector. Right: Sanctioned cheating group’s mean feature vector.

TABLE II
ACCURACY OF PROPOSED SYNCHRONY FEATURE, FEATURE IN [53] AND

EACH SINGLE CHANNEL FEATURE. “TP” AND “FP" STAND FOR TRUE

AND FALSE POSITIVE

the black line showing the trends in the figure, we see that
in region three, the pattern of the feature vector is obviously
different. In the subplot for the truthful condition, it is going
down; in the subplot for unsanctioned cheating, it is flat; in
subplot of sanctioned cheating, it is going up. In region four,
the average value of those numbers is going down from above
0.9 to less than 0.9 until around 0.8.

In practice, we have applied nod, shake, smile, looking for-
ward, and hit-miss rate proposed in [53] for the single-channel
features. Besides the “all-but-one” evaluation, we would like
to investigate each single-channel feature comparing to fea-
tures proposed in [53] and our fused synchrony feature. The
comparison may reveal whether the proposed synchrony fea-
ture is a valid one for deception detection and whether it is
more advantageous other than features proposed in [53] or
single-channel features.

The feature proposed in [53] is mainly the hit-miss rate. The
problem in that paper is to detect deception from truth, which is
a two-class classification problem. The proposed method deals
with three-class categorization problem, which is to classify
truthful, sanctioned cheating, and unsanctioned cheating groups.

In Table II, we listed the comparison of true positive rate,
false positive rate, and precision. For the CMC database,
the fusion feature achieves largest true positive and precision
rate, with smallest false positive rate. In contrast, the feature
proposed in [53] shows limited advantages over other single-
channel features. The reason may be that our proposed fusion
feature includes the feature proposed in [53] and we applied
efficient feature selection method to improve the accuracy. The

Fig. 8. Relationship between proportion of feature length and classification
accuracy.

same observation appears to the FtF database, which consis-
tently reveals that the synchrony feature is a more efficient
higher level feature in detecting deception.

D. Evaluation of Feature Selection

We applied GA for feature selection in our framework. In
GAs, there are several parameters to influence the recognition
rate. Basically, they are the length of selected elements,
crossover segment number, mutation ratio, the amount of pop-
ulation for each generation, etc. The length of selected feature
elements are decided by other factors such as crossover seg-
ment number, mutation ratio, the amount of population, etc.
Since all other factors are finally reflected to the length of ele-
ments, for simplicity, we investigate how the recognition rate
varies with the selected feature length.

To experiment with the parameters in the GA, we set the
crossover segment number to vary from 2 to 100, the crossover
time varied from 1 to 3, and the mutation ratio varied from
0.005 to 0.05. For each set of parameters, we independently
ran the GA five times. Each time, we got the recognition
rate together with the selected feature length. When all the
sets of parameters were listed, we analyzed the relationship
between recognition rate and the feature length. Then the curve
is plotted in Fig. 8.

In the plot, the horizontal axis means the proportion of
the original feature length and the vertical axis stands for
the recognition rate. From Fig. 8, we observe that as the
proportion decreases from 1 to 0.8, the recognition rate is
increasing until it reaches 0.75, when the accuracy reaches
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TABLE III
CONFUSION MATRIX OF CLASSIFYING TRUTHFUL AND DECEPTIVE

CASES OF CMC AND FTF MODALITIES

maximum. And as the proportion goes down from 0.7 to 0.4,
the accuracy decreases almost monotonically. We think that
the feature vector with full length may contain redundancy
and noise. After feature selection, the useful feature elements
are selected, by which the redundancy and noise are removed.
As a result, the accuracy is expected to increase. When the
feature length is continuously shortened, some of the useful
information in the feature vector may be eliminated. In this
case, the accuracy may decrease as the figure shows. As a
consequence, in this experiment, 0.75 is considered optimal
proportion of feature length to achieve the best accuracy.

With optimal chosen parameters, comparing the accuracy
of features with and without feature selection, for two-class
classification, the original accuracy is 54.2% and the accuracy
with feature selection is 74.2%; for three-class classification,
the original accuracy is 46.9% while the accuracy after feature
selection is 66.8%. The accuracy with feature selection is more
than 10% higher than that without feature selection, which
indicates that the feature selection is a key step of accuracy
improvement.

E. Evaluation of the Classification Accuracy

1) Two-Class Classification: Even with feature selection’s
promotion, it is still possible to improve the accuracy since
proper classifier design could enhance performance. The initial
three-class classification using nonlinear SVM scheme may
not be perfect because it contains at least three intersections
of misclassification, which are intersections of truthful and
unsanctioned cheating groups, truthful and sanctioned cheat-
ing groups, unsanctioned cheating and sanctioned cheating
groups. Although the problem is to divide the data into truth-
ful, unsanctioned cheating and sanctioned cheating groups, it
is at least a two-class’ classification problem, which is truthful
and cheating groups’ classification. We could continue to solve
a two-class’ classification problem on the unsanctioned cheat-
ing and sanctioned cheating groups in the same way. Hence,
we get only two intersections of misclassification, misclassifi-
cation of truthful and cheating groups and misclassification of
unsanctioned cheating and sanctioned cheating groups, which
is expected to decrease the error recognition rate. We set both
15 test samples for truthful group and cheating group. Thus,
70 samples are the training samples, 16 in the truthful group
and 54 in the cheating group. The performance is shown in
Table III.

The confusion matrix in Table III shows that for the CMC
dataset in the truthful group, ten samples are correctly clas-
sified while five are not; in the cheating group, which is the
combination of unsanctioned cheating and sanctioned cheat-
ing groups, 24 samples are correctly classified and only six

TABLE IV
ACCURACY OF CLASSIFYING THE TRUTHFUL AND DECEPTIVE CASES.

“TP” AND “FP” STAND FOR TRUE POSITIVE AND FALSE POSITIVE

TABLE V
CONFUSION MATRIX OF CLASSIFYING TRUTHFUL, UNSANCTIONED, AND

SANCTIONED CHEATING CASES OF CMC AND FTF

TABLE VI
ACCURACY OF CLASSIFYING THE TRUTHFUL, UNSANCTIONED, AND

SANCTIONED CHEATING CASES. “TP” AND “FP" STAND FOR TRUE

POSITIVE AND FALSE POSITIVE

are not. Table IV shows the classification accuracy details.
In CMC, truth precision is 62.5% and deception precision is
82.8%, for an overall average of 72.7%. In FtF, the precision
values are 63.2% for truth and 83.3% for deception for an
overall precision of 75.8%, which is roughly at the same level
as CMC.

2) Three-Class Classification: After the classification of
truthful and cheating groups, based on the cheating catego-
rization result, we continue to classify the cheating group
into unsanctioned cheating and sanctioned cheating groups.
The classification scheme is the same as first step. However,
the training and classification is data-dependent, especially in
feature selection and nonlinear SVM classifier training.

Table V shows our final confusion matrices over all the
three categories. In each category, the number of correctly
recognized samples dominates misclassified numbers. Further
Table VI illustrates that the precisions of all classes are above
60%, two of which are approaching 70%. The average accu-
racy is 66.8%, which is clearly a significant improvement over
47% [8].

F. Evaluation of Confessors in Deception Detection

In the experiment, some of the interviewees confessed to
deception during the interview. Before they confess to the
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TABLE VII
CONFUSION MATRIX OF CLASSIFYING TRUTHFUL, UNSANCTIONED, AND

SANCTIONED CHEATING CASES OF CMC AND FTF IN CONFESSION

GROUP EXCLUDED CONDITION

TABLE VIII
ACCURACY OF CLASSIFYING THE TRUTHFUL, UNSANCTIONED, AND

SANCTIONED CHEATING CASES IN CONFESSION GROUP EXCLUDED

CONDITION. “TP” AND “FP” STAND FOR TRUE AND FALSE POSITIVE

interviewer, the pattern may appear the same as cheating mode.
After the confession, they may have felt relieved and then
performed in a similar fashion to truth-tellers. The confessor
group inside the cheating group may have influenced detection.
We aim to determine if the confessors were more synchronous
than the nonconfessors by evaluating the dataset excluding the
confessor group. Comparing to the results in Section III-C,
we expect to find the degree of synchrony by including and
excluding such confession group.

Table VII reports the confusion matrices of the three-class
classification result on both CMC and FtF databases. The
diagonal elements of the two matrices dominate all the other
elements which reflect that our classification scheme groups
most of the samples correctly. Further, comparing Table VIII
with Table VI, the excluding confessor classification achieves
at least as good as the including confessor scheme. Moreover,
it shows that in “Truthful” group of both CMC and FtF,
the excluding scheme achieves 80.6% accuracy for CMC and
87.5% for FtF, while the including scheme achieves 66.7% for
CMC and 68.8% for FtF. Nevertheless, the average precision
of excluding confessor cases is slightly higher than including
cases in both CMC and FtF datasets.

To test the differences between the confessor group and
nonconfessor group, we set up hypothesis-test experiments
both for CMC and FtF databases. For the CMC database, we
have 109 valid video pairs and consequently 109 valid syn-
chrony feature vectors. Among the whole dataset, there are 78
nonconfessors and 31 confessors. We propose the following
hypotheses.

1) H0: The confessor group has no difference with the
nonconfessor group.

2) H1: The confessor group has difference with certain
significance level, which is to reject H0.

Fig. 9. Accuracy histogram of overall and nonconfessor groups. Left:
Accuracy histogram of CMC database. Right: Accuracy histogram of FtF
database.

Fig. 10. More visual results of the multipose tracking system. The first
row are results from one interviewer. The second row are results from the
corresponding interviewee.

Our experiment is set up under the Monte Carlo framework.
The first experiment is to randomly divide the 109 feature vec-
tors into two sets, one for training and the other for testing.
Generally, the training and testing volume is equal. Then we
record the test accuracy of a one-time experiment and repeat
this experiment 100 times. Each time the training and testing
datasets are partitioned again. Thus, we independently con-
duct the experiment 100 times and obtain 100 classification
accuracy records for the 109 feature vectors. The second exper-
iment was to remove the 31 confessors from the whole 109
feature vector group. With only 78 nonconfessors, we conduct
the same experiment as before. We independently repeat the
training and testing process 100 times. Each time the training
and testing datasets are repartitioned. The final classification
accuracy is recorded for comparison.

After the two separate experiments, we obtain two accu-
racy vectors, each of which is with 100 elements. Then, we
apply t-test over the two vectors under the null hypothesis
with significance level 0.05, which is acceptable for most
hypothesis-test experiments. For CMC experiment, the t-value
is 5.87 and the threshold from t-table is 1.66. Since 5.87 is
larger than 1.66, we reject the null hypothesis with probability
0.95. For FtF experiment, the t-value is 8.55 and the threshold
from t-table is 1.66. Since 8.55 is larger than 1.66, we again
reject the null hypothesis with probability 0.95.

The accuracy histogram is visualized for comparison in
Fig. 9. The blue columns represent the overall group accuracy
and the red columns stand for nonconfessor group accuracy.
The vertical axis is the accuracy interval. Each interval cal-
culates the accuracy below that threshold. The horizontal axis
means how many times the accuracy appears inside the inter-
val of vertical axis. Clearly, the distribution for the two groups
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is different. This supports the idea that the confessor groups
undermine classification accuracy.

V. CONCLUSION

In this investigation, we hypothesized that the introduction
of deception into an interview would disrupt the synchrony of
a dyad. We also examined whether the modality of the inter-
view (CMC versus FtF) and the sanctioning of deception by
the interviewee would affect the diagnosticity of synchrony.
The analysis of the CMC and FtF conditions were proposed
in parallel fashion, but the four features (head nod, head shake,
smile, and look forward) had different significance in the two
modality conditions, possibly due to the physical location of
the camera or individuals in each. Both in two-class and three-
class classification, the performance of CMC and FtF datasets
achieved the same degree of accuracy, which suggests that the
degree of synchrony was not influenced much by the modality
of communication. This finding is consistent with other syn-
chrony research based on manual coding [28]. Nevertheless,
from the three-class classification result, the sanctioned cheat-
ing group is well separated from the unsanctioned cheating
group, which indicates sanctioning is a key factor to influ-
ence synchrony and as a result discriminates unsanctioned
cheating from sanctioned cheating. This finding does not con-
tradict findings from synchrony research using manual coding
which found the unsanctioned deceivers most distinguishable.
We state that sanctioning is a key factor for deception detec-
tion but no judgment is made whether sanctioning group or
unsanctioning group is easier to detect. Moreover, the manual
assessment of synchrony was at a gestalt level, not at the level
of detail presented here. Those deceivers who confessed during
the interview also influenced the classification process. Once
the confessor group is removed, the truth-tellers are much
better separated from the deception groups than before.

Automatic methods can often detect events of synchrony
which are missed by the human coders for whatever rea-
son. In particular, we found that while the human coders in
the Dunbar et al. study [29] would label a given video as
having no synchrony in it, our software did detect a num-
ber of synchrony events, producing disagreement between the
results of the manual analysis and the results of the auto-
matic analysis. Despite a small percentage of false negatives
in detecting the events of interest (i.e., nodding, shaking,
smiling), the results of the automatic analysis are support-
ive of the initial hypothesis of synchrony being detectable
and discriminating among conditions. This means that mon-
itoring synchrony events, while establishing implicit mod-
els of deception, may be useful for automatic deception
detection.

False negatives (for shaking and nodding) are attributed to
the poor resolution of the input video and to the fact that the
camera was not frontal to the faces. In particular, the face
was quite small, and although it was correctly tracked, the
displacement of the facial landmarks was sometimes not large
enough to register as a nodding or shaking event. We believe
that using videos of better quality, with facial close-ups, will
improve our results and confirm our findings.

In this paper, we investigated how the degree of interactional
synchrony can signal whether deceit is present or absent. An
automated framework has been introduced to analyze videos
effectively, and a new group of features has been proposed
that not only register synchrony but also can detect decep-
tion at a reasonable accuracy. Future analysis will consider if
the trend discovered thus far by our computerized methods
generalizes to the greater sample population and also to other
scenarios in which deception may be present. Furthermore, we
will improve our face tracking system by incorporating 3-D
deformable models [23], [51], [83].
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