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Abstract—In general image recognition problems, discrimina-
tive information often lies in local image patches. For example,
most human identity information exists in the image patches con-
taining human faces. The same situation stays in medical images as
well. “Bodypart identity” of a transversal slice—which bodypart
the slice comes from—is often indicated by local image informa-
tion, e.g., a cardiac slice and an aorta arch slice are only differen-
tiated by the mediastinum region. In this work, we design a multi-
stage deep learning framework for image classification and apply
it on bodypart recognition. Specifically, the proposed framework
aims at: 1) discover the local regions that are discriminative and
non-informative to the image classification problem, and 2) learn a
image-level classifier based on these local regions.We achieve these
two tasks by the two stages of learning scheme, respectively. In the
pre-train stage, a convolutional neural network (CNN) is learned
in a multi-instance learning fashion to extract the most discrim-
inative and and non-informative local patches from the training
slices. In the boosting stage, the pre-learnedCNN is further boosted
by these local patches for image classification. The CNN learned
by exploiting the discriminative local appearances becomes more
accurate than those learned from global image context. The key
hallmark of our method is that it automatically discovers the dis-
criminative and non-informative local patches through multi-in-
stance deep learning. Thus, no manual annotation is required. Our
method is validated on a synthetic dataset and a large scale CT
dataset. It achieves better performances than state-of-the-art ap-
proaches, including the standard deep CNN.
Index Terms—CNN, discriminative local information discovery,

multi-instance, multi-stage.

I. INTRODUCTION

O VER the course of the recent decades, more and more
automatic image analysis algorithms have been devel-

oped to assist clinicians in the interpretation and assessment
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of medical images. Some of the algorithms are designed for
fundamental image analysis tasks, such as anatomical land-
mark detection and organ segmentation, while the others are
implemented for comprehensive computer-aided-diagnosis
(CAD) systems. Since different organ systems have highly di-
verse characteristics, medical image analysis methods/models
are often designed/trained for specific anatomies to incorpo-
rate prior knowledge, e.g., organ shape [1]–[4]. To benefit
real-world clinical workflows, these algorithms are desired to
be invoked automatically for applicable datasets. Therefore,
it is important to automatically identify the human bodypart
contained in the medical image in the first place. However,
compared to the extensively investigated organ segmentation
and landmark detection topics, automatic bodypart recognition
(identify the human bodypart contained in the medical image)
is still less explored.
In fact, auto-bodypart recognition algorithm may benefit ra-

diological workflow in different aspects. For example, the cur-
rent imaging workflow requires the planning of the scanning
range in topogram or scout scans. With a very reliable and fast
bodypart recognition algorithm, this planning step may be con-
ducted on-the-fly to significantly save scanning time. Another
example is the bodypart-based query in PACS system. Since
the bodypart information in DICOM header is not very reli-
able [5], an automatic bodypart recognition will enable con-
tent-based image retrieval and improve the retrieval precision.
Besides the aforementioned “direct” benefits, bodypart recogni-
tion algorithm also paves the way to other higher level medical
image interpretation tasks. Bodypart recognition can serve as
an initialization module for anatomy detection or segmentation
algorithms. Given the bodypart information, the search range
of the following detection/segmentation algorithms can be re-
duced, hence, the algorithm speed and robustness are improved.
Moreover, with the availability of more and more intelligent
medical image analysis algorithms, radiologists hope that med-
ical images could have been “pre-processed” by all applicable
auto-algorithms before being loaded for manual reading. In this
way, the automatic results can be displayed instantaneously in
the reading room to speed up the reading process. In this sce-
nario, a robust bodypart recognition algorithm again becomes
important to gate the intelligent algorithms properly for mean-
ingful results.
It is worth noting that although DICOM header includes

bodypart information, text-based retrieval methods still face
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Fig. 1. Definition of body sections. Human body is divided into 12 continuous
parts. Each parts may cover different ranges due to the variability of anatomies.

three major challenges. First, it may contain around 15% errors
[5] and thereby limit the accuracy of text-based bodypart recog-
nition. Second, text information in DICOM is highly abstract
and may not precisely describe the anatomies contained in the
scan. For example, it is difficult to tell if a scan with DICOM
tag (0018,0015)=“TSPINE” includes the mid-part of the liver.
In addition, the multi-language nature of DICOM bodypart
information becomes another barrier for text-based retrieval.
On the contrary, a reliable image-based bodypart recognition
algorithm can tackle all these three challenges by leveraging
the intrinsic anatomical appearance information.
CT and MR are two common forms of medical imaging

scans. A CT/MR sequence is usually a 3D volume image
consisted of a series of 2D slices. This paper focuses on
the bodypart identification in a 2D transversal slice, namely
“slice-based bodypart recognition”. Specifically, we divide
human body into continuous sections according to anatomical
context as shown in Fig. 1. Given a 2D transversal slice, the task
of a slice-based bodypart recognition algorithm is to identify
which section the slice belongs to. Although 3D volume always
contain more comprehensive anatomy information, based on
which the bodypart recognition can be more accurate, this study
only aims at slice-based bodypart recognition for two reasons.
First, in some real-world systems, 3D volume is not always
accessible. For example, in a client-server application, the
server end might only receive the 3D volume data slice-by-slice
due to the limited network speed but need to output bodypart
information instantaneously. Second, 2D slice-based bodypart
recognition provides the foundation of 3D bodypart identifica-
tion. Given the bodypart identities of all slices of a 3D volume,
the 3D bodypart can be straightforwardly derived.
Slice-based bodypart recognition is essentially a multi-class

image classification problem, which has been extensively
studied for decades. In general, image classification algorithms
consist of feature extraction and classification modules. Based
on the different design principles of these two modules, various
image classification algorithms can be categorized into three
groups. The first group uses carefully hand-crafted features
followed by classifiers without feature selection capability, e.g.,
SVM and logistic regression [6], [7]. The second group extends
the feature set to a feature pool derived from some feature
basis, e.g., Haar mother functions. Since the feature pool often

includes thousands of features, the following classification
modules need to have the feature selection capability, e.g.,
Adaboost [8], random forest [9]. The third group comes from
the latest achievements of the deep learning research. Instead of
designing any features, those algorithms [10], [11] aim to learn
both the features and classifiers jointly from the data. As the
features are learned for specific image classification tasks, they
often have more discriminative power, hence, achieve better
classification performance than those ad-hoc designed ones.
In slice-based bodypart recognition, it is difficult to “design”

common features that work well for different body parts, due
to diverse appearances in different body sections and large
variability between subjects. Thus, deep learning technology,
which learns features and classifiers simultaneously, becomes a
promising solution. However, slice-based bodypart recognition
has its unique challenge which might not be solved by standard
deep learning. As shown in Fig. 1, although image 7 and 8 come
from aorta arch and cardiac sections, respectively, their global
appearance characteristics are quite similar. For these two
slices, the discriminative information only resides in the local
mediastinum region (indicated by the yellow boxes). The rest
areas are just “non-informative” for classification. Although
the standard deep learning framework is able to learn some
low-level and abstract features from global context, it cannot
learn local patches that are most discriminative for bodypart
recognition. The “non-informative” regions here may mislead
the classifier to recognize these two sections as identical.
Hence, the classification power of the learned deep network
may be limited. In fact, this problem also exists in general
image classification/recognition applications. For example, in
face recognition, Taigman et al. [12] shows that deep learning
can show its power only after the face (the local region of
interest) is properly localized. However, while face is a well
defined object and can be detected by mature algorithms, the
discriminative local regions for bodypart recognition are not
easy to define, not to mention that the effort to build these local
detectors might be quite large.
In summary, two key questions need to be answered to tackle

the challenge of the slice-based bodypart recognition. First,
which local regions are discriminative or non-informative for
bodypart recognition? Second, how to learn the local body-
part identifiers without time-consuming manual annotations?
We answer these questions using a multi-stage deep learning
scheme. In the pre-train stage, a convolutional neural network
(CNN) is learned in a multi-instance learning fashion to “dis-
cover” the most discriminative local patches. Specifically, each
slice is divided into several local patches. The deep network
thus receives a set of labeled slices (bags), each containing
multiple local patches (instances). The loss function of the CNN
is adapted in a way that as long as one local patch (instance) is
correctly labeled, the class of corresponding slice (bag) is con-
sidered to be correct. In this way, the pre-trained CNN will be
more sensitive to the discriminative local patches than others.
Based on the responses of the pre-trained CNNs, discrimina-
tive and non-informative local patches are selected to further
boost the pre-trained CNN. This is the second stage (namely
boosting stage) of our learning scheme. At run-time, a sliding
window approach is employed to apply the boosted CNN to the
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subject image. As the CNN only has peaky responses on the
discriminative local patches, it essentially identifies bodypart
by focusing on the most distinctive local information and
discarding non-informative local regions. Thanks to its ability
to “discover” local discriminative local patches, this method is
expected to identify bodypart more accurately and robust than
global image context-based approaches.
Themajor contributions of this work include: 1. Amulti-stage

deep learning strategy is proposed to identify anatomical body
parts by using discriminative local information; 2. The propsoed
method does not require annotations of the discriminative local
patches. Instead, it automatically discovers these local patches
through multi-instance deep learning. Thus, our solution be-
comes highly scalable. 3. We validate our method on a large
number of synthetic images and 7000+ CT slices. In both ex-
periments, it shows superior performance than state-of-the-art
methods.

II. RELATED WORK

In this section, we will review relevant studies in two cat-
egories. First, we will review different bodypart recognition
methods proposed in medical image analysis domain. Second,
we will also review representative image recognition methods
in general computer vision community, since slice-based body-
part recognition is technically similar to these problems.
Several bodypart recognition systems in medical imaging

domain has been introduced in this decade. Park et al. [13]
proposed an algorithm to determine the body parts using energy
information from Wavelet Transform. Look-up tables are de-
signed to classify the imaging modality and body parts. Hong et
al. [14] proposed a framework to identify different body parts
from a whole-body scan. The method starts from establishing
global reference frame and the head location. After determining
the bounding box of the head, other body parts including
neck, thorax cage, abdomen and pelvis, are localized one by
one using different algorithms. In general, these approaches
employ ad-hoc designed features and algorithms to identify
major body parts which have globally variant appearances.
Recently, more learning-based approaches are proposed for
bodypart recognition. All of these methods essentially resort
to the detection of specific organs or landmarks. In [15], Zhan
et al. trained multiple, organ-specific classifiers and optimize
the schedule of organ detections based on information theory.
In [16], Criminisi et al. utilized regression forests for anatomy
detection and localization and obtained better accuracy than
their classification approach in [17]. In [18], Donner et al. also
trained regressor for anatomical landmark detection. However,
since these organ/landmark-based recognition methods rely on
a number of organ/landmark detectors, large manual annotation
efforts are required in the training stage.
Technically, slice-based bodypart recognition is an image

classification problem, which has been extensively studied in
computer vision and machine learning communities. In gen-
eral, existing image classification methods can be categorized
into two groups, global information-based and local infor-
mation-based. Global information-based approaches extract
features from the whole image. Conventional approaches often
rely on carefully designed/selected features, e.g., gist [19],

SIFT [20], Histogram of Oriented Gradients (HOG) [21] and
their variants. These features are extracted on either dense grids
or a few interested points, organized as bag of words to provide
statistical summary of the spatial scene layouts without any
object segmentation [22]. The framework of global represen-
tations followed by classical classifiers has been widely used
in scene recognition [22] and image classification [23], [24].
With the latest advances of machine learning technology, deep
learning based algorithms [10], [25] have shown their superior
in these tasks due to the ability of learning expressive nonlinear
features and classifier simultaneously.
Roth et al. [26] presented a method for anatomy-specific clas-

sification of medical images using deep convolutional networks
(ConvNets). They applied a trained deep CNN on 2D axial CT
images to classify 5 bodyparts (neck, lungs, liver, pelvis and
legs) and obtained the state-of-the-art accuracy (5.9% error).
Their results demonstrated the power of deep learning in body-
part recognition. However, real-world applications may require
a finer grained differentiation beyond these 5 bodyparts, e.g.,
aortic arch vs cardiac sections. Due to the globally-similar and
locally-different appearance characteristics of these body sec-
tions, the CNNs trained on the whole axial images may not be
able to differentiate them effectively.
Global information-based approaches achieved good per-

formances in some image classification problems. However,
it is not sufficient or appropriate to recognize images whose
characteristics are exhibited by local objects, e.g., jumbled
image recognition [27], multi-label image classification [11],
[28], and scene classification [29], [30]. On the contrary, local
information-based approaches can achieve better performance
here. In [31], Szegedy et al. utilized CNN for local object
detection and recognition and achieves state-of-the-art perfor-
mance on Pascal VOC database. However, the training stage
requires manually annotated object bounding boxes, which is
often time consuming. To avoid explicit local region or object
annotation, different approaches have been emerged. Felzen-
szwalb et al. [32] designed a part-based deformable model
using local information of object parts for object recognition
and detection. They assumed a star-structured model for object,
then treated the object's part locations as latent variables during
training. In [33], Singh et al. used unsupervised clustering
method and one-vs-all linear SVM to train classifier for each
cluster to discover the discriminative patches which can be
used as visual words in spatial pyramid based classification.
In another pioneer work, Wei et al. [11] applied an existing
general objectness detection (BING [34]) to produce some
candidate local windows from a given image, which are used to
do multi-label. Recently, several studies have emerged to apply
multi-instance learning (MIL) [31], [35]–[37] combined with
CNN to better utilize local information in weakly supervised
classification or segmentation tasks. For example, Wu et al.
proposed a deep multi-instance learning framwork in a weakly
supervised setting for image classification and auto-annota-
tion based on object and keyword proposals [38]. The object
proposals are generated by existing methods, e.g., BING [34],
and the keyword proposals are crawled from web texts using
Baidu image search engine. Pinheiro et al. combined CNN and
MIL to do pixel labeling in [39]. They built their segmentation
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network over the already trained Overfeat [40] and achieved
better performance on Pascal VOC dataset than other weakly
supervised methods. Papandreou et al. proposed a semantic
image segmentation method in weakly or semi-supervised
setting (with bouding boxes or image-level labels) [41]. They
combined CNN with a conditional random field (CRF) [42] in
a EM algorithm to inference the pixel-level labels. Hou et al.
extended the EM based label inference method and combine the
patch-level classifiers to predict image-level label in gigapixel
resolution image classification [43].
Inspired by the latest advances in deep learning research,

we propose a multi-instance multi-stage deep learning frame-
work to recognize bodypart in CT slices. Compared to other
learning-based approaches, our method only requires “weak”
supervision at a global level, i.e., bodypart labels at image level.
Our framework is able to discover the discriminative “local” in-
formation automatically. In this way, the annotation efforts in
the training stage are dramatically reduced. This is in partic-
ular meaningful for medical image applications, since the an-
notations in medical images often require clinical expertise and
high cost. This work is extended from our IPMI paper [44] by
fine-tuning the framework and re-organizing data sets for more
extensive evaluations to explore the benefits and limitations of
our proposed method.

III. METHODOLOGY

We design a multi-stage deep learning framework to discover
local discriminative patches and build local classifiers. We start
this section by the problem statement and notation definitions.
The first learning stage is introduced in Section III-B, which
aims to learn representative local image features in a supervised
multi-instance fashion. Then we describe the second learning
stage in Section III-C, in which some discriminative and non-
informative local patches are extracted from images and used
to boost learning to obtain a patch-based classifier for image
recognition. In Section III-D, we discuss the run-time image
classification strategy using the learned CNNmodel. At last, we
show details of the implementation in Section III-E.

A. Problem Statement
Definitions: Slice-based bodypart recognition is a typical

multi-class image classification problem for a learning algo-
rithm. Denote as the input slice/image, as the number
of body sections (classes), and as the cor-
responding class label of . The learning algorithm aims to
find a function . In traditional image classification
frameworks, is often defined as , where and

denote the feature extractors and classifiers, respectively.
In the context of convolutional neural network (CNN),

becomes a multi-layer neural network. An example of stan-
dard CNN is shown in Fig. 2, it has two convolutional layers
(C1, C3), each followed by a max-pooling layer (S2, S4), one
fully connected hidden layer (H5) receiving outputs of the last
pooling layer, and one logistic regression (LR) layer (O6) as
the output layer. In CNN, becomes multiple nonlinear
layers, which aim to extract image features in a local-to-global
fashion. is implemented by the LR layer, whose output
is a -dimension vector representing

Fig. 2. Illustration of one standard CNN architecture and the outputs of each
layer (similar to LeNet [45]).

the probability of belonging to each class . Mathematically,
can be described as a conditional probability as

. Here, denote the CNN coefficients, which in-
clude the weights of convolutional filters, hidden nodes, LR
nodes, as well as the bias vectors. The final predicted label
is determined by the argument of the maximum element (class
with the highest probability) in .
Given a set of training images ,

with corresponding discrete labels , the
training algorithm of CNN aims to minimize the loss function:

(1)

where indicates the probability of image
being correctly classified as class using network coefficients

.
CNN has shown impressive performance in image clas-

sification tasks [10], [11]. The success shall be attributed to
its capability of modeling complex nonlinear functions and
leveraging the context information of neighboring pixels. In
these successful applications, standard CNN is conducted as a
global learning scheme, which takes the entire image as input.
However, in slice-based bodypart recognition, distinctive infor-
mation often comes from local patches (as shown in Fig. 1) and
these local patches are distributed “inconsistently” at different
positions of the slices. The intrinsic conflicts between “global
learning scheme” and “local distinctive information” may limit
the performance of standard CNN in bodypart recognition.
(One may argue that CNN can still learn local features through
its convolutional layers. However, this situation only holds
while local features always appear at the similar location across
different images, which is not the case of bodypart recognition.)
We design a toy example to illustrate this problem. As shown
in Fig. 3(a), we randomly position and combine 4 types of
geometry elements, square, circle, triangle and diamond to
synthesize two classes of binary images. While circle and dia-
mond are allowed to appear in any classes, triangle and square
are exclusively owned by Class1 and Class2, respectively (ref
Section IV-A for more details). Using standard CNN that takes
the whole image as input, the classification accuracy is
(row “SCNN” of Table I(a)). It implies that standard CNN
does not discover and learn the discriminative local patches:
“triangle” and “square”. (Otherwise, the accuracy shall be
much higher due to the significant differences between “tri-
angle” and “square”. ) This problem will become trivial if we
have the prior knowledge of the discriminative local patches
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TABLE I
CLASSIFICATION ACCURACIES ON SYNTHETIC DATA IN TERMS OF RECALL, PRECISION AND F1 SCORE (%).

and build local classifiers on them. However, in bodypart
recognition, it is not easy to figure out the most discriminative
local patches for different body sections. In addition, even with
adhoc knowledge, annotating local patches and training local
classifiers often takes large effort. The solution thus becomes
non-scalable when body-sections are re-defined or the imaging
modalities are changed.
To leverage the local information, more important, to au-

tomatically “discover” the discriminative local patches for
different body sections, we design a two-stage CNN learning
framework. It consists of pre-train and boosting stages, which
will be detailed next.

B. Learning Stage I: Multi-Instance CNN Pre-Train
In order to exploit the local information, CNN should take

discriminative local patches instead of the entire slice as its
input. Here, the key problem is how to automatically discover
these local patches through learning. This is the major task of
the first stage of our CNN learning framework. A multi-instance
learning strategy is designed to achieve this goal.
Given a training set with corre-

sponding labels . Each training image, , is divided into a
set of local patches defined as .
These local patches become the basic training samples of the
CNN and their labels are inherited from the original images, i.e.,
all share the same label . While the structure
of CNN is still the same as the standard one, the loss function is
adapted as:

(2)

where is the probability that the local patch
is correctly classified as using CNN coefficients .

The new loss function is different from (1) by adopting a
multi-instance learning criterion. Here, each original training
slice is treated as a bag consisting of multiple instances
(local patches), . Within each bag (slice), only the in-
stance with the highest probability to be correctly classified is
counted in the loss function. Such instance is considered as the
most discriminative local patch of the image slice. Let be
the output vector of the CNN on local patch . The
component of represents the probability of being
correctly classified. As illustrated in Fig. 4, for each training
image , only the local patch that has the highest response
at the component of (indicated by the yellow and
purple boxes for two training images, respectively), contributes

Fig. 3. A synthetic toy example. (a) Synthetic images of two classes. (b) The
discriminative and non-informative local patches selected by the pre-trained
CNN model. Note that we never “tell” the algorithm that these two classes are
differentiable by triangle and square.

to the loss function and drives the update of network coeffi-
cients during the backward propagation. Accordingly, the
learned CNN is expected to have high responses on discrimina-
tive local patches. In other words, the most discriminative local
patches for each image class are automatically discovered after
the CNN training. Fig. 3(b) shows the discovered discriminative
patches (containing triangle or square) for the image classifica-
tion task in toy example. This is exactly in accordance to the fact
that these two classes are only distinguishable by “triangle” and
“square”. It proves that our method is able to discover the key
local patches without manual annotation.
To ensure that the learned CNN will have stable high re-

sponses on discriminative local patches, a spatial continuity
factor is further incorporated into the loss function as:

(3)

Here, denotes the local patches in the neighborhood
of . Based on (3), for each training slice, the local patch
to be counted in the loss function is not the most individually
discriminative one (i.e., with the highest probability of being
correctly classified), but the one whose neighboring patches and
itself are overall most discriminative. In this way, the selected
discriminative local patches will be robust to image translation
and artifacts.

C. Learning Stage II: CNN Boosting

In the second stage of our learning framework, the main task
is to boost the pre-trained CNN using selected local patches,
which is illustrated in Fig. 5.
The first type of selected local patches are the discriminative

ones, i.e., these local patches on which the pre-trained CNN
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Fig. 4. Illustration of pre-train learning stage.

Fig. 5. Illustration of boosting learning stage.

have high responses at the corresponding classes. For each
image , we select discriminative local patches as:

(4)

Here, is the coefficients of the pre-trained CNN.
denotes the response of the pre-trained CNN

on the local patch corresponding to the correct class .
is the operator that returns the arguments of the

largest elements.
We noticed that apart from the discriminative local patches,

the remaining regions cannot be completely ignored in the
boosting stage for two reasons. First, only selecting discrimina-
tive patches to boost classifier may lead to overfitting problems.
Second, some “confusing” local patches may mislead the body-
part recognition. For example, the patches containing lung
regions (green dashed boxes in Fig. 1) appear in both aortic arch
and cardiac sections. For these “confusing” patches, CNN may
generate similarly high responses for both aortic arch and cardiac
classes. (Note that since the pre-trained CNN is only ensured
to correctly classify one local patch per slice, the responses of
the remaining patches are not guaranteed.) At run-time, when
CNN is applied to the confusing patches, the high responses
on multiple classes may induce wrong bodypart identification.
Therefore, the algorithm should select these “confusing” regions
as the second type of local patches in boosting stage to suppress
their responses for all classes (body sections).

To this end, we introduce a new “non-informative” class
(patches in dashed box in Fig. 5) besides the existing training
classes. This class includes two kinds of local patches: 1) local
patches where the pre-trained CNN has higher responses on
wrong classes, and 2) local patches where the pre-trained CNN
has “flat” responses across all classes. Denote
as the output of the pre-trained CNN on , i.e., the
probability of belonging to class , the non-informative
local patches of a training slice are defined as:

(5)

Recall the toy example, Fig. 3(b) shows the selected discrim-
inative and non-informative local patches. When the discrimi-
native patches from Class1 and Class2 only contain triangle or
square, respectively, the non-informative patches may include
circle, diamond or background. This is exactly in accordance to
the fact that these two classes are only distinguishable by “tri-
angle” and “square”.
After introducing the additional non-informative class, the

CNN structure keeps the same as the pre-trained CNN, except
the LR layer has an additional output (see shadowed box in the
rightmost diagram of Fig. 5) and the corresponding connections
to the hidden layer. Since the pre-trained CNN already cap-
tured some discriminative local appearance characteristics, all
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network layers except the last one are initialized by inheriting
their coefficients from the pre-trained CNN. These coefficients
are further adapted by minimizing (6):

(6)

Here, and de-
note the discriminative and non-informative local patches se-
lected from all training images, respectively. Note that since
the non-informative local patches are not belonging to any body
section class now, their responses on any body section class can
be effectively suppressed during the CNN boosting stage.

D. Run-Time Classification
The two-stage CNN learning algorithm is summarized as

follows.

Input:

Scalars , , , dataset ,
CNN architecture

Output:

Boosted CNN coefficients

1: Partition into overlapping local regions

2: Pre-train CNN on using multi-instance loss
function (3), and obtain optimized

3: Extract and according to (4) and (5)

4: Assign label to each instance of , and label K+1
to each of

5: Modify pre-trained CNN by adding one unit to LR, layers
except LR inherit coefficients

6: Boost CNN on set using loss function (6), and
obtain optimized

At runtime, the boosted CNN is applied for bodypart
recognition in a sliding window fashion. The sliding window
partitions a testing image into overlapping local patches

. For each local patch , the
boosted CNN outputs a response vector with components

, where denotes
the optimal coefficients of (6). The class of the local patch
is then determined as:

(7)

Since the class is an artificially constructed non-infor-
mative one, local patches belong to this class should be ignored
in body section determination. Simply, the class (body section)
of the testing slice can be determined by its most discrimina-
tive patch as:

(8)
(9)

However, it is possible that the detected is an outlier
with different prediction than its neighbors. It would be more
robust to fuse the prediction around its neighborhood to label
the image. Therefore, we combine the class probabilities of the
neighboring patches around the most discriminative patch to de-
rive the image class as:

(10)

E. Implementation Details
In this study, we assume one middle level discriminative

patch from an image is enough for the image classification. To
discover the patches which are discriminative and representa-
tive for their image categories, the patch size should not be too
small to include semantic information for the discriminative
objects. To simplify analysis, we slide a fixed-size window
to extract overlapping patches from images for training and
testing. The patch size and step size is specified in experi-
mental settings. We further analyze the sensitivity of patch
size later. In learning stage II, since the patches per image are
overlapping, the non-informative patches are selected with a
spatial constraint that they should not appear neighboring to
the discriminative patches.
In each of the two training stages, we train a CNNmodel sim-

ilar to Fig. 2. The following strategies are employed to improve
the performance of the learned CNN. First, Rectified Linear
Units (ReLUs) are used to map the neurons' output in convolu-
tional layers. As shown in [10], [46], ReLUs demonstrates faster
convergence and better performance than sigmoid functions.
Second, to incorporate larger variability in our training samples,
hence, increase the robustness of the CNN, we augment data
using label-preserving transformations [25], [47]. Specifically,
we simply apply up to 10% (relate to image size) random trans-
lation to increase training data samples. Third, the “dropout”
strategy [48] is employed to reduce the risk of “over-fitting”.
It forces half of the neurons randomly “dropped out” at each
training iteration. In this way, the complex correlation of neu-
rons is reduced and more robust features can be learned. Finally,
as the training set may be too large to load into memory at one
time, we trained our model using a mini batch of samples at
each iteration. The optimization is implemented by stochastic
gradient descent with a momentum term [49] and a weight
decay term . For a weight , its update at iteration is
defined as

(11)

where

(12)

is the gradient of weight based on current batch of sam-
ples.
The learning process is conducted on a training subset and a

validation subset. It won't stop until the error rate on validation
subset is smaller than a threshold or a predefined maximum
number of epochs is reached. Besides, the learning may stop
earlier if it cannot reach smaller error since the current smallest
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one after a number of patient iterations. Our algorithm is imple-
mented in Python using Theano library [50]. To leverage the
highly parallelable property of CNN training, we trained our
models on a 64-bit desktop with i7–2600 (3.4 GHz) CPU, 16GB
RAM and NVIDIA GTX-660 3GB GPU.

IV. EXPERIMENTS

A. Image Classification on Synthetic Data
We first validate our method on a synthetic data set, which

has been briefly introduced as a toy example in Section III-A. It
is constructed by 4 types of geometry elements: triangle, square,
circle and diamond. The size of all synthetic images are 60 60
with black background (intensity value 0). The basic geometry
elements are created within a bounding-box 20 20 and random
intensity values in . These elements are then resized with
random scales up to 10% in height and width, and randomly
positioned on the image background. In constructing the two
image classes, we ensure that the triangle and square are the
“distinctive” element and only appear in Class1 and Class2, re-
spectively. Besides the distinctive element, each image has an-
other element, which is randomly chosen from circle or diamond
by coin flipping. (Some examples of the synthetic images are
shown in Fig. 3(a).) Overall, we create 2000 training, 2000 val-
idation and 2000 for testing samples (1000 for each class). Let

(true positive) denote the number of samples belonging to
class and correctly classified; (false negative) denote the
number of samples belonging to class but misclassified;
(false positive) denote the number of samples not belonging to
class but misclassified as class . Classification accuracies are
reported in terms of recall, precision and F1 score as

(13)

(14)

The classification accuracy of standard CNN algorithm is
83.3%, as shown in the “SCNN” row in Table I(a). This in-
ferior performance results from the fact that the global CNN
learning scheme may not learn the most discriminative local
patches. On the contrary, the most discriminative and non-infor-
mative local patches are effectively discovered by our two-stage
learning framework as shown in Fig. 3(b). The discovered pat-
tern exactly matches the rule of generating these two classes.
By leveraging these local patches, our classification accuracy
can reach 100% (“BCNN2” row in Table I(a)).
A comparison study is conducted using: (1) logistic regres-

sion (LR); (2) SVM; (3) standard CNN, similar to LeNet [45],
trained on whole image (SCNN); (4) local patch-based CNN
without boost, i.e., the CNN trained by pre-train stage only
(PCNN); (5) local patch-based CNN boosted without addi-
tional non-informative class (BCNN1); (6) local patch-based
CNN boosted with both discriminative and non-informative
patches (BCNN2). Methods (1)–(3) represent conventional
learning (using image intensities directly as features) and deep
learning approaches. Methods (4), (5) are two variants of our
proposed one (6), which are presented to verify the effects of

Fig. 6. The second toy example. (a) Synthetic images of two classes distin-
guished by diamond and circle. It is important to note that we used the same
image samples as in Fig. 3, but re-labeled the images into two classes based on
different rules. (b) The discriminative and non-informative local patches dis-
covered by the pre-trained CNN model.

each component of our method. The parameters of LR and
SVM are optimized using grid search with cross-validation. All
CNN-related methods use the same intermediate architecture:
one convolutional layer with 10 5 5 filters, one max-pooling
layer with 2 2 kernel, one hidden layer of 300 nodes, and
finally followed by a LR layer to output response. The patch
size for all patch-based CNNs is 30 30. There are 36 patches
extracted from each 60 60 image through a sliding window
with 6-pixel step size.
As shown in Table I(a), standard deep learning method

(SCNN) is better than LR, which indicates deep learning can
learn good features from raw data. By leveraging the local
discriminative information, PCNN gets improvement
from SCNN. Among our local patch-based CNNs (PCNN,
BCNN1 and BCNN2), BCNN1, which is trained on extracted
discriminative (without non-informative) patches, is worse than
PCNN due to overfitting. BCNN2, which includes all designed
components, achieves the best performance.
To further prove the adaptivity of our algorithm, we re-la-

beled the synthetic data using Diamond and circle as distinctive
elements in class 1 and class 2, respectively (see Fig. 6(a)). In
other words, although the synthetic data are exactly the same,
the local patches to distinguish the two classes become different.
This is in analogy to real-world problems where the datasets
are identical but the classification goal is changed. After con-
ducting the pre-train algorithm, the extracted local patches from
the learned model are shown in Fig. 6(b). Again, the extracted
local patches contain the most discriminative information, di-
amond and circle. The classification accuracies are shown in
Table I(b). Again, our two-stage learning framework BCNN2
achieves the best performance among all comparison methods.
This result demonstrates that our multi-instance CNN learning
can adaptively learn discriminative local regions for specific
classification tasks without any local level annotations.

B. Bodypart Recognition of CT Slices
In the second experiment, we applied our method in body-

part recognition of transversal CT slices. As shown in Fig. 1,
transversal slices of CT scans are categorized into 12 body
sections (classes). Our dataset includes 7489 transversal
CT slices. They were collected from scans of 675 patients
with very different ages (1–90 years old). The imaging pro-
tocols were different: 31 different reconstruction kernels,

in-slice pixel resolution. We organize
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Fig. 7. Confusion matrix of BCNN2 on CT data. Values are normalized to
in each row.

such a dataset with large variance to test the robustness of the
proposed method. The whole dataset is divided into 2413 (225
patients) training, 656 (56 patients) validation and 4043 (394
patients) testing subsets. In this experiment, we augment data
by simply applying up to 10% random translations in training
and validation subsets to make them three times larger.
Our preprocessing includes two different steps: image sub-

sampling and image cropping. First, all images are re-sampled
to have pixel resolution and 90 90 in size.
Then, cropping operation extracts 50 50 local patches from
each image with 10-pixel step size. Thus, 25 local patches are
extracted per image. Our CNN has similar structure as in Fig. 2.
C1 layer has 20 9 9 filters. C3 layer has 40 9 9 filters. Two
sub-sampling layer, S2 and S4, use 2 2 max-pooling. H5 layer
has 600 hidden nodes. LR layer, O6, has 12 output nodes in
pre-train stage, or 13 output nodes in boosting stage.
As shown in the “BCNN2” row of Table II, our method

can achieve the classification accuracy (F1 score) at 92.23%.
Fig. 7 shows more detailed classification performance by the
confusion matrix. Most errors appear close to the diagonal
line, which means most mis-classifications happen in the
neighboring body sections. Quantitatively, 99.2% of the testing
cases have “less-than-one neighboring class error” (within
the red line corridor of Fig. 7). In practice, this kind of errors
are already acceptable for some use cases and they may be
further fixed by post-processing algorithms. For example, the
0.8% gross errors can be further suppressed by a simple label
smoothing after classifications of a series of continuous slices
for 3D bodypart identification. The learning process takes 440
epochs in stage I and 70 epochs in
stage II.
For comparison, tested image classification methods in-

clude: (1) LR1, (2) LR2, (3) SVM1, (4) SVM2, (5) CaffeNet,
(6) SCNN, (7) SCNN_a, (8) PCNN, (9) BCNN1, and (10)
our proposed BCNN2. In LR1 and SVM1 methods, we use
bag-of-word model with dense SIFT features to train logistic

regressor and SVM classifier, respectively. While LR2 and
SVM2 methods simply replace SIFT by HOG features. Same
as the previous experiment, the LR and SVM parameters were
optimized using grid search with cross-validation on the same
training and validation sets as other comparison methods.
Then, the optimized models were applied on the same testing
set to produce results for fair comparisons. SCNN method is
the standard CNN that takes the whole slice as input. SCNN_a
method is the same as SCNN except trained by six times
more augmented data samples with random transformations,
rotations and scalings. Method (8), (9) are the variants of (10)
as described in Section IV-A. Similar network structure is used
in all CNN-based methods, (6)-(10), except different input and
output sizes in patch-based CNNs (8)-(10). CaffeNet [51] has
the similar structure as AlexNet [10] with a minor variation,
which is trained on whole images without cropping. We no-
ticed that training of CaffeNet with 50 50 cropping doesn't
converge. This observation shows that our proposed method
is not merely a kind of data augmentation via image cropping.
The discriminative and non-informative patches discovered
by multi-instance learning are the keys to success. BCNN1 is
trained on extracted discriminative (without non-informative)
patches from learning stage I. Although the trained classifier fo-
cuses more on discriminative patches, ambiguous local patches
across different classes (e.g., upholding arms may look similar
to neck) are completely ignored and thereby mislead the classi-
fier at runtime. Thus, the performance of BCNN1 is worse than
PCNN and close to the SCNN. Compared to its variants, the
proposed BCNN2 achieves the best performance (even better
than much deeper CNN, CaffeNet), which proves the necessity
of using all strategies designed in our method. In addition, we
noted that the SCNN_a trained with more augmented data is
even inferior to the SCNN due to overfitting (training error:
SCNN_a 4.4% vs. SCNN 5%; testing error: SCNN_a 14.7%
vs. SCNN 12.3%). It shows that the global CNN cannot learn
the anatomy characteristics from more augmented data but
overfit them. As shown in Table II, the overfitting problem
is more severe in neck (column 3) and liver upper (column
9) sections. These two sections happen to have subtle global
appearance differences compared to their neighboring sections
and are thus prone to overfitting. The online classification time
of each method is about (1) 4 ms, (2) 3 ms, (3) 5 ms, (4) 4 ms,
(5) 3 ms, (6) 4 ms, (7) 4 ms, (8) 10 ms, (9) 11 ms, (10) 11 ms
per image, respectively.
In this application of bodypart recognition, the most dis-

criminative patch samples for each class are shown in Fig. 8 as
well as the some samples of non-informative (kind of mis-
leading) patches. From this figure, we observe that the proposed
method “magically” extracts meaningful local patches for
each class without any prior information, and these repre-
sentative and discriminative local patches can significantly
improve the classification task comparing with the global image
information.
To investigate whether the standard CNNs can discover the

required discriminative features at some intermediate layers or
they completely miss them, we did extra experiments to train
linear SVM classifier on the learned hidden activation on each
layer of the baseline CNN (SCNN). Totally 5 classifiers were
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TABLE II
CLASSIFICATION ACCURACIES ON CT DATA IN TERMS OF RECALL, PRECISION AND F1 SCORE (%).

Fig. 8. Automatically discovered discriminative and non-informative patches
from each class through multi-instance learning.

learned from features on layers (C1, S2, C3, S4, H5). The fea-
ture sizes are 134480, 33620, 43560, 10240 and 600, respec-

tively. The F1-scores on testing set are 0.75, 0.77, 0.86, 0.86 and
0.88, respectively. Compared with reported F1-score of SCNN

, we conclude that (1) features on higher layers are
better for the classification task; (2) although the learned fea-
tures in SCNN are discriminative to some extent, the more rep-
resentative and discriminative local features can only be discov-
ered in our proposed patch based learning algorithm.

C. Sensitivity Experiments
To evaluate the robustness of the trained models, we apply

different scales of random linear translation on the testing data
and compute the classification error rates. The Fig. 9(a) shows
the results. From the plots, we can see that our proposed method
BCNN2 has the best robustness regarding to the random trans-
lation of testing samples. Although the training and validation
subsets have been augmented using up to 11% random transla-
tion, the other approaches do not perform aswell as the proposed
method when the testing samples have larger translations. In
this situation, retraining the models on augmented dataset with
larger translation could be a solution. However, the re-training
costs cannot be overlooked and fixing it after the fact is not ef-
ficient in practice.
As one of the important parameters in BCNN2 method, step

size of sliding window testing is investigated regarding to the
accuracies (shown in Fig. 9(b)). The running times for step sizes
1, 5, 10, 15, 20, 25, and 30 pixels are 541.1, 30.6, 11.7, 5.3, 5.2,
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Fig. 9. Performance analyses on the sensitivity of parameters. (a) Classification errors vs. scales of random translations on testing data. (b) Classification accuracies
vs. step size of sliding window in BCNN2. (c) Classification accuracies vs. patch size in BCNN2.

3.6 and 3.4 ms per image respectively. Considering the balance
of running time and accuracy, step size 10 or 15 should be a rea-
sonable choice in this experiment. The effect of patch size to the
classification accuracy is also investigated as shown in Fig. 9(c).
We can see from the plot that (1) the patch size should not be
too small to capture the discriminative information (size 20 or
30); (2) the performance is not very sensitive to the local patch
size once it is big enough to include discriminative information
(sizes from 40 to 60 in this task).
We also conducted two extra experiments to test other vari-

ants of our proposed method. First, we use (2) with a bit larger
patch size (70 70) rather than the (3) to accommodate for the
neighbors information. The final classification accuracy in terms
of F1-score becomes 91.67%, a little worse than that of the pro-
posed BCNN2 (92.23%). Second, instead of using the run-time
classification strategy by (10), we can simply use the (8) as
in [44], or majority voting of predictions from all partitioned
patches in the slice to predict image classification. The F1 score
drops and , respectively.

V. CONCLUSIONS
In this paper, a novel multi-stage deep learning framework

is presented to tackle the bodypart recognition problem. Its key
novelty is to automatically exploit the local information through
CNN, and discover the discriminative and non-informative local
patches via multi-instance learning. It is worth noting that since
no manual annotations are required to label these local patches,
our method becomes very scalable. The proposed method is
evaluated on a synthetic dataset and a large scale CT dataset.
The experimental results show clear improvements compared
with state-of-the-art methods. It is proved that the success of the
proposed method does not result from more augmented training
samples but its capability of discovering local characteristics of
different bodyparts. This supervised discriminative patch dis-
covery and classification method can be easily applied to other
image classification tasks where local information is critical to
distinguish different classes. Our proposed framework can also
be extended to 3D cases using 3D convolutional filters. In fu-
ture, we plan to investigate extracting multi-scale patches from
images and exploring some sophisticated algorithms to further
improve the performance in the boosting stage.
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