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Abstract—Automatic analysis of histopathological images has
been widely utilized leveraging computational image-processing
methods and modern machine learning techniques. Both com-
puter-aided diagnosis (CAD) and content-based image-retrieval
(CBIR) systems have been successfully developed for diagnosis,
disease detection, and decision support in this area. Recently, with
the ever-increasing amount of annotated medical data, large-scale
and data-driven methods have emerged to offer a promise of
bridging the semantic gap between images and diagnostic informa-
tion. In this paper, we focus on developing scalable image-retrieval
techniques to cope intelligently with massive histopathological
images. Specifically, we present a supervised kernel hashing tech-
nique which leverages a small amount of supervised information
in learning to compress a 10 000-dimensional image feature vector
into only tens of binary bits with the informative signatures pre-
served. These binary codes are then indexed into a hash table that
enables real-time retrieval of images in a large database. Critically,
the supervised information is employed to bridge the semantic
gap between low-level image features and high-level diagnostic
information. We build a scalable image-retrieval framework
based on the supervised hashing technique and validate its per-
formance on several thousand histopathological images acquired
from breast microscopic tissues. Extensive evaluations are carried
out in terms of image classification (i.e., benign versus actionable
categorization) and retrieval tests. Our framework achieves about
88.1% classification accuracy as well as promising time efficiency.
For example, the framework can execute around 800 queries
in only 0.01 s, comparing favorably with other commonly used
dimensionality reduction and feature selection methods.

Index Terms—Breast lesion, hashing, high dimension,
histopathological image analysis, large-scale image retrieval,
supervised learning.

I. INTRODUCTION

REAST cancer is the second most common cancer in
women. In the United States, breast cancer alone ac-
counted for 29% of all new cancer cases among women in
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2013. Fortunately, over the past decade the death rate for female
breast cancer has decreased by 17%, although the incidence of
breast cancer has risen. This situation is largely the result of
improvements in early detection and treatment [1]. The prein-
vasive stages of breast cancer have two general histological
categories: the lobular and ductal subtypes. Most work focuses
on ductal preinvasive cancer, since approximately 80% of all
diagnosed preinvasive and invasive breast cancers are of this
subtype [2]. Pioneering work done by Page & Dupont divided
intraductal lesions into three major classes [usual ductal hyper-
plasia (UDH), atypical ductal hyperplasia (ADH), and ductal
carcinoma in situ (DCIS)] and suggested that ADH and DCIS
should be considered as precursor lesions [3]. On the other
hand, there is little evidence to suggest that UDH is a precursor
lesion. These differences in biology are manifested in the treat-
ment of patients. The standard of care for patients diagnosed
with UDH on core biopsy is routine follow-up, whereas those
with ADH and DCIS are subjected to excisional biopsy, which
can be associated with pain, discomfort, and scarring for the
patient while also adding significantly to health-care costs.

Classical examination methods include screening tests and
biopsy. Compared to mammography, histopathology slides pro-
vide more comprehensive information for diagnosis. However,
manual examination of microscopic images is labor intensive
and time consuming, and may depend on a subjective assess-
ment by the pathologist, which poses a special challenge in the
diagnosis of preinvasive breast cancer.

Computer-aided diagnosis (CAD) systems have been widely
used in an attempt to relieve the workload on pathologists and to
offer more reliable and consistent analysis of histopathology im-
ages. The appearance and widespread study of CAD systems for
cytological diagnosis can be traced back to the last century [4].
Recently some studies have focused on analyzing high-resolu-
tion images digitized from tissue histopathology slides [S]-[11].

In addition to the classifier-based CAD systems providing di-
agnosis results or grading scores, content-based image retrieval
(CBIR) has also been extensively investigated for decision sup-
port in many clinical applications, including digital pathology
[12]-[16]. Given an image database with diagnosis informa-
tion, CBIR methods aim to retrieve and visualize images with
morphological profiles most relevant to and consistent with the
query image [17]. CBIR can also be used for classification pur-
poses by considering the majority diagnosis of the retrieved im-
ages as the most likely diagnosis.

Traditional CBIR methods in medical files usually focus
on small data sets that have only tens or hundreds of images.
New opportunities and challenges arise with the ever-in-
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creasing amount of patient data in the current era. Intuitively,
larger databases provide more comprehensive information
and may improve the accuracy of CBIR systems. On the
other hand, achieving an acceptable retrieval efficiency is a
challenging task for large-scale data, especially when very
large numbers of features are required to capture subtle image
descriptors. In fact, CBIR methods usually suffer from the
“curse of dimensionality” and low computational efficiency
when using high-dimensional features in large databases. Al-
though cloud and grid computing are a potential solution for
efficient computing [18], [19], few efforts have been made to
develop computational and scalable algorithms for large-scale
histopathological image analysis.

In this paper, we focus on scalable image-retrieval methods
for the image-guided diagnosis of preinvasive breast cancer
using several thousand breast-tissue images. In particular, we
design a CBIR framework by leveraging high-dimensional
texture features and hashing-based methods [20]-[24] for
large-scale image retrieval. A kernel-based supervised hashing
model is introduced to encode a high-dimensional image fea-
ture vector to short binary bits using only a limited number of
labeled images. Such binary bits can significantly reduce the
amount of memory required for storing the image database. The
proposed technique also allows for real-time querying of an
image collection of millions of images, thanks to a hash table
containing only binary codes. A preliminary version of this
work was reported in a conference paper [25], with 500 testing
images. In this paper, we improve the optimization scheme for
efficiency and online updating, and also validate the proposed
framework thoroughly on a larger data set. Specifically, we
validate our framework in terms of both image classification
and retrieval on a breast-lesion data set containing 3121 images
from 116 patients and achieve an accuracy of 88.1% in a 10-ms
query time for around 800 testing images and a precision of
83% in retrieval.

The major contribution of this work is twofold. 1) A com-
prehensive and large-scale CBIR framework designed to ana-
lyze histopathological images by leveraging high-dimensional
texture features and hashing-based methods is successfully em-
ployed for the image-guided diagnosis of preinvasive breast
cancer using several thousand breast-tissue images. 2) An effi-
cient updating and optimization scheme is proposed to improve
the supervised and kernelized hashing method. As a benefit, our
framework can handle new training samples more efficiently
than the traditional method.

The paper is organized as follows. Section II reviews rele-
vant work in two categories, CAD systems and CBIR systems.
Section III introduces the formulation and optimization of our
hashing-based image-retrieval framework for decision support.
Section IV presents the experimental results. Section V summa-
rizes our contributions and plans for future work.

II. RELATED WORK

In this section, we review three major categories of relevant
work: CAD systems for the analysis of histopathological im-
ages, CBIR systems in medical image analysis, and hashing
methods for large-scale image retrieval.

A. Classifier-Based CAD for Histopathological Images

Classifier-based CAD systems consist mainly of image
preprocessing, detection and/or segmentation, feature extrac-
tion, machine learning-based classification, and postprocessing
methods. We briefly review relevant work mainly according to
the classification method, which is the focus of this paper. For
example, Petushi et al. [26] employed adaptive thresholding
and morphological operations to segment cells and represent
high-density areas of different types of nuclei. These cells were
then classified with linear discriminant analysis (LDA) and
forward/backward search methods. Yang et al. [27] employed
filter banks to model phenotypic appearance in histopatho-
logical images, which were classified via a gentle boosting
mechanism. Caicedo ef al. [28] proposed to use SIFT to detect
key points and extract local descriptors, which are used to
obtain a bag-of-words [29] and classified using a support vector
machine (SVM) with kernel functions. Basavanhally ef al. [30]
proposed to detect locations of nuclei using a combination of
region growing and Markov random fields. Three graphs (i.e.,
Voronoi diagram, Delaunay triangulation, and minimum span-
ning tree) are constructed to describe the arrangement of cells.
SVM is then employed to classify the high or low presence of
lymphocytic infiltration that can be used to evaluate pheno-
typic changes in breast cancer. Dundar et al. [31] proposed to
segment cells using a Gaussian mixture model (GMM) and a
watershed algorithm and to describe individual cells by their
size, shape, and nucleoli. After that, multiple-instance learning
(MIL) with SVM was used to identify and classify the stage of
breast lesion. Most of these methods use one type of features
to classify histopathological images. It is also possible to fuse
multiple features in classifiers for comprehensive information.
For instances, Tabesh et al. [32] aggregated color, texture, and
morphometric cues at the global and histological object levels
for k-nearest neighbors (kNN) and SVM-based classification.
Doyle et al. [33] graded breast cancers with both graph-based
and texture features for SVM-based classification.

B. CBIR Systems for Medical Image Analysis

CBIR shows its importance in medical image analysis by
providing doctors with diagnostic aid in the form of visualizing
existing and relevant cases, along with diagnosis informa-
tion. Therefore, clinical decision-support techniques such as
case-based reasoning or evidence-based medicine have a strong
need for retrieving images that can be valuable for diagnosis.
For example, Comaniciu et al. [12] proposed a content-based
image-retrieval system that supports decision making in clinical
pathology, in which a central module and fast color segmenter
are used to extract features such as shape, area, and texture
of the nucleus. System performance was assessed through a
ten-fold cross-validated classification and compared with that
of a human expert on a database containing 261 digitized
specimens. Dy et al. [34] described a new hierarchical ap-
proach of CBIR based on multiple feature sets and a two-step
approach. The query image is classified into different classes
with best discriminative features between the classes. Then
similar images are searched in the predicted class with the
features customized to distinguish subclasses. El-Naqa et al.
[35] proposed a hierarchical learning approach that consists
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of a cascade of a binary classifier and a regression module to
optimize retrieval effectiveness and efficiency. They applied
this to retrieve digital mammograms and evaluated it on a
database of 76 mammograms. Greenspan et al. [36] proposed
a CBIR system that consists of a continuous and probabilistic
image-representation scheme. It uses GMM and informa-
tion-theoretic image matching via the Kullback-Leibler (KL)
measure to match and categorize X-ray images by body region.
Song et al. [37] designed a hierarchical spatial matching-based
image-retrieval method using spatial pyramid matching to
effectively extract and represent the spatial context of patho-
logical tissues. In the context of histopathological images from
breast tissues, Schnorrenberg et al. [38] extended the biopsy
analysis support system to include indexing and content-based
retrieval of biopsy slide images. A database containing 57
breast-cancer cases was used for evaluation. Zheng et al. [13]
designed a CBIR system to retrieve images and their associated
annotations from a networked microscopic pathology image
database based on four types of image features. Akakin et al.
[15] proposed a CBIR system using the multi-tiered approach
to classify and retrieve microscopic images, which enables both
multi-image query and slide-level image retrieval in order to
protect the semantic consistency among the retrieved images.

As emphasized in [39], scalability is the key factor in CBIR
for medical image analysis. However, owing to the difficulties
in developing scalable CBIR systems for large-scale data sets,
most previous systems have been tested on a relatively small
number of cases. With the goal of comparing CBIR methods
on a larger scale, ImageCLEF and VISCERAL provide bench-
marks for medical image-retrieval tasks [40]-[44]. Recently,
Foran et al. [19] designed a CBIR system named ImageMiner
for comparative analysis of tissue microarrays by harnessing the
benefits of high-performance computing and grid technology.
However, few attempts have been made to design computational
and scalable retrieval algorithms in this area, particularly for the
analysis of histopathological images.

C. Hashing Methods for Large-Scale Image Retrieval

Recently, hashing methods have been intensively investi-
gated in the machine learning and computer vision community
for large-scale image retrieval. Representative methods in-
clude, but are not limited to, weakly-supervised hashing in
kernel space [45], semi-supervised hashing [46] supervised
hashing [24], and compact kernel hashing with multiple fea-
tures [47]. Among these methods, kernelized and supervised
hashing (KSH) [24] is generally considered the most effec-
tive, achieving state-of-the-art performance with a moderate
training cost. Therefore, this was chosen in our framework for
scalable image retrieval. The central idea of KSH is to reduce
the gap between low-level hash code similarity and high-level
semantic (label) similarity by virtue of supervised training.
In doing so, a similarity search in the binary code space can
reveal the given semantics of examples. In other words, KSH
does well in incorporating the given semantics into the learned
hash functions or codes, while the other hashing methods are
inadequate in leveraging the semantics. Specifically, compared
to the unsupervised kernel hashing method [22], [24] and the
semi-supervised linear hashing method [23], [46], KSH shows
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Fig. 1. Overview of our proposed system.

much higher search accuracy, as it takes full advantage of
supervised information (originating from the semantics) that is
not well exploited by those unsupervised and semi-supervised
methods. Even compared against competing supervised hashing
methods such as binary reconstructive embedding (BRE) [48]
and minimal loss hashing (MLH) [49], KSH still shows clear
accuracy gains yet with much shorter training time. One major
limitation of KSH is that optimization in order to obtain ac-
curate hash functions is very time consuming. Therefore, we
propose to further improve the original KSH with an efficient
updating and optimization scheme that handles new training
samples on the fly.

III. METHODOLOGY

A. Overview of Scalable Image Retrieval Framework

Fig. 1 shows the proposed framework of our scalable image
retrieval-based diagnosis system. It includes offline learning and
run-time search. During the offline learning, we first extract
high-dimensional visual features from digitized histopatholog-
ical images. These features model texture and appearance in-
formation based on SIFT [50] and are quantized with a bag-of-
words [29]. The SIFT descriptor is an effective local texture fea-
ture that uses the difference of Gaussian (DoG) detection result
and considers the gradient of pixels around the detected region.
It can provide an informative description of cell appearance and
is robust to subtle changes in staining color. It has been used in
both general computer vision tasks and histopathological image
analysis [28], [51].

Although these features can be used directly to measure the
similarity among images, computational efficiency is an issue,
especially when searching in a large database (e.g., exhaustively
searching k-nearest neighbors). Therefore, we employ a hashing
method to compress these features into binary codes with tens
of bits. Such short binary features allow easy mapping into a
hash table for real-time search. Each feature is then linked to the
corresponding training images using an inverted index. During
a run-time query, high-dimensional features are extracted from
the query image and then projected to the binary codes. With
a hash table, searching for nearest neighbors can be achieved
in a constant time, irrespective of the number of images. The
retrieved images (via inverted indices of nearest neighbors) can
be used to interpret this new case or for decision support based
on majority voting.
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Fig. 2. Visualization of desirable hash functions as a hyperplane.

B. Kernelized and Supervised Hashing

In this section, we introduce the key module for histopatho-
logical image retrieval, a kernelized and supervised hashing
method.

1) Hashing Method: Given a set of image feature vectors

= {x,...,z,} C R (in our case, x; is the high-dimen-
sional texture feature extracted from the ¢th histopathological
image), a hashing method aims to find a group of proper hash
functions h : RY ~ {1,—1}!, each of which generates a
single hash bit to preserve the similarity of original features.
Searching k-nearest neighbors using tens of bits is significantly
faster than traditional methods (e.g., Euclidean distance-based
brute-force search), owing to constant-time hash-table lookups
and/or efficient Hamming distance computation. Note that
hashing methods are different from dimensionality-reduction
techniques, since a fundamental requirement of hashing is to
map similar feature vectors into the same bucket with high
probability. Fig. 2 visualizes desirable hash functions as a
hyperplane to separate higher-dimensional features. Therefore,
hashing methods need to ensure that the generated hash bits
have balanced and uncorrelated bit distributions, which leads
to maximum information at each single bit and minimum
redundancy among all bits.

2) Kernelized Hashing: Kernel methods can handle prac-
tical data that are mostly linearly inseparable. For histopatholog-
ical images, linear inseparability is an important constraint that
needs to be taken into account when building hashing methods.
Therefore, kernel functions should be considered in hashing
methods b = sgn(f(z)) [22] to map the feature vectors into
higher-dimensional space. A kernel function is denoted as « :
R? x R? 5 R. The prediction function f : R% — R with kernel
& plugged in is defined as

= r(z), —b 1)
j=1

where Z(1), ..., Z(mm) are m(m < n) feature vectors randomly
selected from X', a; € R is the coefficient, and b € R is the bias.

The bits generated from hash functions 4 using f aim to keep
as much information as possible, so the hash functions should
produce a balanced distribution of bits, i.e., Y., h(z;) = 0.
Therefore, b is set as the median of {d°7", k(x(;), z:)a; iy,

1 l\ 1
N
/
unknown *, dissimilar . I:> 11111
\ g N ;)
\."‘ \-1 -1 1

label matrix

Fig. 3. Supervised information is encoded in the label matrix S.

which is usually approximated by the mean. Adding this con-
straint into (1), we obtain

= i (F;(m( % i k(z ) a; = a' k(z)
i—1 i=1
’ @

cam] .k 2 RE = R™ is k(z) =

where a [a1, a2, ...
T . .
- ,U'm] , 1N which i =

[ k(Ey, &) — p1, - K(Z (), T)
i1 k@), i) /n.

The vector a is the most important factor that determines hash
functions. In traditional kernelized hashing methods, a is de-
fined as a random direction drawn from a Gaussian distribution
[22], without using any other prior knowledge (i.e., no semantic
information). This scheme works well for natural images, es-
pecially scenes, because of large differences in their appear-
ance. However, such differences are very subtle in histopatho-
logical images. For example, identifying subtle differences be-
tween benign and actionable categories may require character-
izing cytoplasmic texture or nuclear appearance. This subtlety
motivates us to leverage supervised information to design dis-
criminative hash functions that are suitable for histopathological
image retrieval.

3) Supervised Hashing: Intuitively, hashing methods min-
imize the Hamming distance of “neighboring” image pairs
(e.g., close in terms of the Euclidean distance in the raw feature
space). “Neighboring” in our case is defined by its semantic
meaning, i.e., whether the two images belong to same category
or not. Therefore, supervised information can be naturally
encoded as similar and dissimilar pairs. Specifically, we assign
the label 1 to image pairs when both are benign or actionable,
and —1 to pairs when one is benign and the other is actionable,
as shown in Fig. 3. | (I <« n) feature vectors are randomly
selected from X to build the label matrix 5. Note that we
need to provide labels for only a small number of image pairs.
Therefore, labeled data are explicitly constrained by both se-
mantic information and visual similarities, whereas unlabeled
data are mainly constrained by visual similarities and implicitly
affected by labeled data.

Using this supervision scheme to bridge the semantic gap,
r hash functions hy(z),_, are then designed to generate r
discriminative hash bits based on Hamming distances. How-
ever, direct optimization of the following Hamming distances
Di(zs, x;) = [{k|hi(x;) # he(z;),1 < k < r}| is nontrivial.
Therefore, code inner products can be used to simplify the
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optimization process. As shown in [24], a Hamming distance
and a code inner product are actually equivalent

code,(x;) o code,(x;) = r — 2Dp (24, x;) 3)
where code, (x) are r-bit hash codes and the symbol o is the
code inner product.

Therefore, the objective function @ to the binary codes H; is
defined as

2
1
min Q= H—HZHIT -8 €]
Hye{l,—1}xr r 7
h1($1)7 'ah'r(xl)

where H; — is the code matrix of

h1($1)7 ey h,,-(.’El)
the labeled data X; and S is a label matrix with 1 for similar

pairs and —1 for dissimilar pairs. ||.]|» denotes the Frobenius
norm. Define K; as [k(z1),...,k(z)]T € R>™, k(z;).
The inner product of code matrix H; can be represented as
HH" = Y ._, sgn(Kay)(sgn(Kax))" for binarization.
Therefore, the new objective function Q that offers a clearer
connection and easier access to the model parameter ay, is

r 2

Z sgn(Kay)(sgn(Kiay))" —rS
k=1

min
ay

Olay) =

F

)

C. Optimization and Online Updating

A greedy method is used for solving hash functions se-
quentially. A residue matrix is defined as Rp_1 = 7S
— Ef;ll sgn(Ka}) (sgn(Kjar)) T (Ro = rS) when solving
a;, where a; is the previously solved vector. Using this residue
matrix, the objective function becomes

r%ikn glay) = —(sgn(Kiar)) " Ry_1sgn(Ka,).  (6)

This objective function has two problems in generating hash
functions accurately and efficiently. The first is that g(ay) is
neither convex nor smooth, making it hard to solve exactly. To
alleviate this first problem, two approximation schemes can be
employed to minimize g.

1) Spectral relaxation [21] is applied to drop the sign func-

tions and hence convexify the object function

glax) = (Kiay,) ' Ri—1(Kiay)

max
ay
s.t.(Klak)TRk_l(Klak) =1 (7)

Although spectral relaxation results in fast optimization, it
might deviate far from the optimal solution under a large
1, as the relaxation removes the sign function.
2) Sigmoid smoothing is employed to replace sgn() with the
sigmoid-shaped function o(z) = 2/(1 + exp(—z)) — 1
min - g(ay) = —(p(Kiax) Riap(Kiar).  (8)
Consequently, the objective function ¢ can be minimized
using the standard gradient-descent technique. Despite the
accuracy, such a scheme is not efficient enough.
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Algorithm 1: Optimization and Online Updating

Input: training feature vectors X' = {x; € R}, label
matrix S € R¥*!, old hash functions h(zx) if
updating

initialize Ry = r.S and T},,, = 500;

for k =1;k <r do

if is updating then

| a% —ay;
end
else
solve the generalized eigenvalue problem
K'Ry_1K;a = A\K|" K;a obtaining the largest
eigenvector a) such that (a9)" K;" K;a = I
end

use the gradient descent method to optimize

ming — (o(Kjag)) " Ry_1¢(K;ay) with the initial

solution a% and T;,,,, budget iterations, achieving aj;;

RO «+ sgn(Kial) h* < sgn(Ka});

if (h%)TRyp_1h° > (h*) T Ry_1h* then

| a;«a) h*<h°
end

Ry = Ry_1 — h*(hStar) T

end
Output: r hash functions {hy(x) = sgn(k' (z)a})}i_;

The second problem is how to efficiently update hash func-
tions when new samples arrive. It is likely that not all training
images are available at the beginning. When a new batch of la-
beled images come, regenerating hash functions on all training
data is obviously not a good solution owing to the inefficiency.
To solve these two above-mentioned issues, we propose a hybrid
optimization scheme that combines both spectral relaxation and
sigmoid smoothing, and also adapt the online updating concept
to generate new hash functions efficiently with new samples. As
shown in Algorithm 1, special relaxation is used for initializa-
tion purposes since it is very efficient. Then sigmoid smoothing
is used for accurate generation of the hash functions. Given new
data, instead of retraining the whole process we use previous re-
sults as the new initialization for sigmoid smoothing, i.e., as a
warm start. Therefore, hashing functions can be updated on the
fly. As shown in the experiments, this updating scheme is sig-
nificantly faster than the traditional retraining process.

After the discriminative hash functions are obtained via
optimizing g, high-dimensional image features can be mapped
into informative binary bits. Specifically, when a query image
comes, its extracted features are mapped into the kernel space
and compressed as binary bits, using the hashing functions
learned by our algorithm. Then, similar histopathological
images in the training set can be retrieved by exhaustively but
efficiently comparing their Hamming distances. Furthermore,
these binary bits can be also indexed into a hash table for
constant-time retrieval, independent of the number of images.

IV. EXPERIMENTS

In this section, we discuss the experimental setting and results
using microscopic breast-tissue images.
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Fig. 4. Key points detected by difference of Gaussian (marked as blue stars).

A. Experimental Setting

Breast-tissue specimens available for this study were col-
lected on a retrospective basis from the IU Health Pathology
Lab (IUHPL) according to the protocol approved by the In-
stitutional Review Board (IRB) for this study. All the slides
were imaged using a ScanScope registered digitizer (Aperio,
Vista, CA, USA) available in the tissue archival service at
IUHPL. 3121 images (around 2250 K pixels) were sampled
from 657 larger region-of-interest images (e.g., 5 K x 7 K)
of microscopic breast tissue, which were gathered from 116
patients. 53 of these patients were labeled as benign (UDH)
and 63 as actionable (ADH/DCIS), based on the majority
diagnosis of nine board-certified pathologists. To demonstrate
the efficiency of our method, one fourth of all patients in
each category were randomly selected as the test set and the
remainder used for training. Note that each patient may have
different number of images. Therefore, the number of testing
images is not fixed. The approximate number is about 700-900
in each testing process. All the experiments were conducted
on a 3.40 GHz CPU with four cores and 16 G RAM, in a
MATLAB implementation.

In each image, 1500-2000 SIFT descriptors were extracted
from key points detected by DoG [50] (Fig. 4). These descrip-
tors were quantized into sets of cluster centers using bag-of-
words, in which the feature dimension equals the number of
clusters. Specifically, we quantize them into high-dimensional
feature vectors of length 10 000, to maximally utilize these mil-
lions of cell-level texture features. We provide both qualitative
and quantitative evaluations for our proposed framework on two
tasks, image classification (i.e., benign versus actionable cate-
gory) and image retrieval, in terms of accuracy and computa-
tional efficiency.

In our system, classification is achieved using the majority
vote of the top images retrieved by hashing. We compare our
approach with various classifiers that have been widely used in
systems for histopathological image analysis. Specifically, KNN
has often been used as the baseline in analyzing histopatho-
logical images [32], [18], owing to its simplicity and proved
lower bound, despite the inefficiency in large-scale databases.
The Bayesian method is another solution to ensemble statistics

>
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=
Q
Q
<
(=1
.9 1
= 0.78+ N -3-SVM [28]
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Fig. 5. Comparison of classification accuracy with different dimensions of fea-
tures (from 100 to 10000).

of all extracted features and minimize the classification metric,
which shows its efficacy in classifying histopathological images
[12]. Boosting methods are always employed to combine mul-
tiple weak classifiers for higher accuracy [27], [18], [52]. SVM
with a nonlinear kernel is commonly used in histopathological
images because of its efficiency and the ability to handle lin-
early inseparable cases [53], [28], [54], [9]. For fair comparison,
all parameters and kernel selections of these compared methods
were optimized by cross-validation.

In addition, we also compared our proposed method with sev-
eral dimensionality-reduction algorithms in terms of classifica-
tion accuracy. Principal component analysis (PCA) has been
widely used in this area to preserve variance of original features
[55]. Graph embedding is a nonlinear dimensionality-reduction
algorithm that performs well in grading of lymphocytic infiltra-
tion in HER24- breast cancer histopathology [30]. Since we use
supervised information in generating hash functions, a super-
vised dimensionality reduction algorithm, neighborhood com-
ponents analysis (NCA) [56], was also chosen for our experi-
mental comparisons.

B. Evaluation of Image Classification

To demonstrate the benefit of high-dimensional features, all
methods are evaluated on multiple dimensions of SIFT quan-
tization, ranging from 100 to 10,000. In our proposed frame-
work, we use a hashing method to compress all features to 48
bits (only six bytes), which is a suitable size for using a hash
table. To compare with dimensionality-reduction methods, we
compress all features into 48 dimensions. In contrast to hashing
methods using bits, results of other methods are based on floats
or doubles. Therefore, they need much more storage room than
hashing results do.

Fig. 5 shows the quantitative results for the classification ac-
curacy. Most methods achieve better accuracy with higher-di-
mensional features. This is very intuitive, as finer quantization
of SIFT features usually provides richer information. In partic-
ular, since the SIFT interest points cover most nuclear regions
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Fig. 6. Comparison of the classification accuracy for different dimensionality-
reduction methods.

in images, fine quantization (i.e., high-dimensional features) in-
dicates analysis on a small scale. Exceptions are the Adaboost
and Bayestian methods, whose accuracy drops when the feature
dimensions increase. This indicates that high-dimensional fea-
tures do not guarantee the improvement of accuracy. An impor-
tant factor is the proper utilization of such information. For ex-
ample, Adaboost is essentially a feature-selection method that
chooses only an effective subset of features for the classifica-
tion. Therefore, it may lose important information, especially in
high-dimensional space, resulting in accuracy worse than that
of our hashing method. Our method is also generally better than
kNN and its variations, owing to the semantic information (i.e.,
labels of similar and dissimilar pairs in hashing) that bridges
the semantic gap between images and diagnoses. Note that our
hashing method needs only a small amount of supervision—in
this case, similar or dissimilar pairs of 40% images. This is gen-
erally less than the supervised information required by SVM
in the training stage. It compares favorably to all other methods
when the feature dimension is larger than 1000. The overall clas-
sification accuracy is 88.1% for 10 000-dimensional features,
2%—18% better than other methods.

Fig. 6 shows the comparison with various dimension-
ality-reduction methods that have been used in analyzing
histopathological images, including PCA [55], graph em-
bedding [30], and NCA [56]. Our approach consistently
outperforms the other methods. In particular, graph embedding,
a nonlinear dimensionality-reduction method, fails to handle
this challenging data set, especially in high-dimensional space,
probably because of over-fitting and inappropriate assumption
of the nonlinearity. Therefore, its results are worse than PCA
for this data set. NCA is slightly better than PCA, owing to the
supervised information during compression. Compared to kNN
results that use uncompressed features, PCA is slightly worse
and NCA is comparable in general. However, both of them are
5% worse than our method.

Fig. 7 compares the computational efficiency of these
methods. With increasing dimensionality the running time of
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some compared methods increases dramatically. When feature
dimensionality reaches 10000, kNN needs 16 s to classify
all query images, and Adaboost needs 5 s. SVM, dimension-
ality-reduction methods, and the proposed method are much
faster. However, the running time for SVM increases with
the feature dimensionality, as shown in the expanded view of
Fig. 7. In contrast, PCA, graph embedding, NCA, and ours
achieve constant running time in this data set owing to the
fixed size of features after compression. Compared to other
dimensionality-reduction methods, our approach is about 10
times faster because of the efficient comparison among binary
codes. In addition, the running time of all KNN-based methods
increases with the number of images in a data set, as exhaustive
search is needed, while hashing-based methods can achieve
O(1) efficiency using a hash table. To summarize, the average
running time of our method is merely 0.01 s for all testing
images, which is 40 times faster than SVM and 1500 times
faster than kNN.

The online updating scheme was also evaluated and com-
pared with the traditional retraining scheme. Specifically, the
running time was evaluated for both the online updating and
offline retraining schemes, using different numbers of new
training samples ranging from 1% to 20%. As shown in Fig. 8,
the online updating scheme is three to four times faster than the
offline retraining, indicating better scalability and efficiency.
This is expected, since our online updating scheme focuses
mainly on analyzing the new data, which are a small portion of
the whole data set. In fact, when the existing database is larger,
the improvement will be even more significant. We have also
conducted experiments to compare the classification accuracy
of the online updating approach and the offline-retraining
scheme. When 19%-20% new samples are added, the classifi-
cation accuracy of both methods is generally comparable. On
average, the retraining process is 0.035% more accurate than
our online updating, which is negligible compared to around
88% overall accuracy. This demonstrates that our method
can update the hashing model efficiently without sacrificing
classification accuracy In fact, handling 20% new samples
is already adequate for practical use, since new data usually
come gradually and each model updating process needs to
incorporate just a relatively small portion.

C. Evaluation of Image Retrieval

We have also conducted experiments on image retrieval using
10 000-dimensional features. The retrieval precision, evaluated
at a given cut-off rank and considering only the topmost results,
is reported in Table I, along with the query time and memory
cost. The results are quite consistent with the image classifi-
cation. The mean precision of the hashing method is around
83%, and the standard deviation is 1.1%, which is much better
than PCA [55], graph embedding [30] and NCA [56]. In most
cases, the precision of our method is at least 6% better than the
others, except the NCA. Our method is around 3.5% better than
NCA on benign cases. To demonstrate statistical significance,
we perform t-test for the precision obtained by NCA and by
the proposed method on benign cases, under the null hypothesis
using a significance level of 0.05. The p-values are found as
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3.6 x107% 3.2 x107% and 5.7 x 10 7% at the range of top 10,
20, and 30 retrievals, respectively, demonstrating that precision
values achieved by the proposed technique are indeed signif-
icantly better than NCA on the benign cases. In addition, our
method is around 14% better than NCA in the actionable cases,
resulting much higher average precision. In fact, most tradi-
tional methods produce such highly unbalanced results as NCA
does, i.e., the retrieval precision of the benign category is much
higher than that of the actionable one. In contrast, our method
does not have this problem, owing to the supervised informa-
tion and the optimization for balanced hash bits. Our framework
is also computationally more efficient than traditional methods.
The query time of our hashing method is a thousand times faster
than kNN and ten times faster than other dimensionality-reduc-
tion methods. Note that our method takes a constant time when
using the hash table, independent of the number of feature di-
mensions and the number of samples. Furthermore, the memory
cost is also considerably reduced (10 000 times less than that of
kNN). Therefore, this method is more applicable to large-scale

databases (millions of images) than are other methods.

Fig. 9 shows our image-retrieval results. The top five relevant
images are listed for each query image. The differences between
certain images in different categories are very subtle. Our accu-
rate results demonstrate the efficacy of the proposed method.

Specifically, the features capturing local texture and appearance
are very robust to various image sizes, cell distributions, and
occlusions by the blood. The supervised information also im-
proves the retrieval precision by correlating binary code with
diagnosis information. These retrieved images are clinically rel-
evant in potential (i.e., retrieved images belong to the same cat-
egory as the query image) and thus can be useful for decision

support.

D. Discussions

We discuss the benefits of the algorithm, parameter sensi-
tivity, implementation issues, and limitations here.

Regarding the choice of high-dimensional features, around
1000 dimensions have usually been used for quantization by
many previous studies, a number that has been proved to achieve
good accuracy. Using lower-dimensional features (e.g., 100) is
not accurate, while using higher-dimensional features is not effi-
cient, and the improvement of accuracy could be marginal. This
is consistent with our experimental results shown in Fig. 5, i.e.,
a performance jump from 100 to 1000 dimensions. On the other
hand, when analyzing histopathological images, using high-di-
mensional features (e.g., 10 000) implies nearly cell-level anal-
ysis, which is actually beneficial for the accuracy, even though
the accuracy gain is not as big as jumping from 100 to 1000.
Therefore, we have introduced hashing methods to harvest the
benefits of high-dimensional features, without sacrificing com-

putational efficiency.

Regarding supervised information, it significantly improves
classification accuracy thanks to the discriminative modeling of
the hashing function in an attempt to bridge the semantic gap.
In Fig. 10, we randomly selected 100 samples from benign and
actionable categories and visualized their 48 hash bits. The dis-
tributions of hash bits are clearly different between the two cat-
egories, explaining the high accuracy for classification. We also
quantitatively investigated the benefits of using supervised in-
formation. Specifically, we evaluated our method when using
10% to 100% supervision or training labels, as shown in Fig. 11.
The gain in accuracy is very high (from 71% to nearly 87%)
when the ratio of training labels increases from 10% to 40%,
which demonstrates the efficacy of using supervised informa-
tion. For more than 40% labels, the improvement of accuracy

becomes marginal, reaching 88% accuracy when using 100%
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TABLE 1
COMPARISON OF RETRIEVAL PRECISION FOR THE TOP 10, 20, AND 30 RESULTS, ALONG WITH THE MEMORY COST OF TRAINING DATA AND QUERY TIME OF
ALL TEST IMAGES. BOTH MEAN VALUES AND THE STANDARD DEVIATION (STD) OF 20 EXPERIMENTS ARE REPORTED. BEST PRECISION IN EACH ROW FOR
BENIGN AND ACTIONABLE CATEGORIES ARE HIGHLIGHTED

kNN [32] PCA [55] NCA [56] Graph Embedding [30] Ours
benign  actionable  benign actionable benign actionable  benign actionable benign  actionable
P@10 0.779 0.687 0.762 0.705 0.799 0.697 0.672 0.487 0.836 0.830
P@20 0.773 0.653 0.758 0.681 0.800 0.689 0.673 0.486 0.839 0.829
P@30 0.770 0.631 0.755 0.667 0.800 0.685 0.670 0.480 0.837 0.833
STD 0.024 0.028 0.020 0.012 0.011
Time (s) 15.77 10.07 10.04 10.03 <0.01
Memory 134.58MB 0.65MB 0.65MB 0.65MB 0.01MB

Fig. 9. Four examples of our image retrieval (query marked in red, and retrieved images marked in blue). First two rows are benign; the last two rows are action-

able.

Hashing

HataBz{sel

Fig. 10. Visualization of compressed hash bits. Their distribution well sepa-

rates the begin and actionable categories.

labels. This means that our method needs only a small portion
of labels to achieve high accuracy, owing to the unified frame-

ion Accuracy

Classificat

L L
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02 03 04 05 06
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Fig. 11. Classification accuracy when using 10%-100% supervision.

work of coupling Hamming distance optimization and super-
vised information.
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One of the most significant benefits of our proposed frame-
work is the computational and storage efficiency. Comparing
48 bits with Hamming distance or hash table is substantially
faster than using high-dimensional features. However, a natural
question is whether the length of hashing bits affects the ac-
curacy and retrieval precision. Therefore, we evaluated the ef-
fect of hashing-bit lengths ranging from 1 to 48. Theoretically, 1
bit is sufficient for binary classification purpose, i.e., actionable
versus benign. In fact, as shown in Fig. 12, using 8 bits already
achieves high accuracy for classification. However, such short
code is not discriminative enough for image retrieval. For ex-
ample, 8 bits can represent only 64 hash values. This means that
nearly 50 images are mapped into the same hash value, which
is an unordered list with zero Hamming distance. Retrieving
them may not be beneficial for decision support. On the other
hand, using more than 64 bits adversely affects computational
efficiency, since the hash table is no longer an option owing to
memory constraint. Therefore, we chose 48 bits for this task, en-
suring sound accuracy for classification and high relevance for
retrieval without sacrificing efficiency. We expect that our scal-
able framework can be efficiently used for real-time querying
of very large databases.

In the task of image retrieval, our method effectively re-
trieves images with morphological and architectural image
patterns similar to the query image, as shown in Fig. 9. This
can be explained by the capability of the hashing function in
leveraging both diagnostic information and visual similarities.
In other words, hash bits can simultaneously encode local
textural features with semantic labels.

V. CONCLUSION

In this paper, we developed a scalable image-retrieval frame-
work for intelligent histopathological image analysis. Specifi-
cally, we employed hashing to achieve efficient image retrieval
and presented an improved kernelized and supervised hashing
approach for real-time image retrieval. The potential applica-
tions of our framework include image-guided diagnosis, de-
cision support, education, and efficient data management. In

our future work, we will examine more types of features, espe-
cially those features stemming from segmentation and architec-
tures. Furthermore, we will incorporate appropriate feature-fu-
sion techniques to design a hybrid hashing method such that
multiple types of features can be systematically fused to boost
image-retrieval accuracy. We will also evaluate our framework
in more applications in histopathological image analysis.
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