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ABSTRACT

ZHONGYU LI. Interactive Mining for Large-scale Neuro-Morphological Datasets.
(Under the direction of SHAOTING ZHANG)

In this dissertation, we aim to investigate advanced methods for the computational

analytics of large-scale neuro-morphological datasets, which can help neuroscien-

tists interactively explore neurons in real-time. Particularly, we tackle the neuro-

morphological analytics into three inter-related components: 1) quantitative descrip-

tions for 3D neuron morphologies, i.e., computing effective features that can differ-

entiate subtle difference among massive neurons; 2) large-scale neuron mining, i.e.,

efficiently indexing neurons with similar morphologies in large-scale datasets; 3) in-

teractively neuron exploration and visualization, i.e., developing neuron visualization

tools and bring human in the loop to explore neurons in an interactive and immersive

manner. We propose a series of methods in tackling problems related to the above

three components. Regarding the quantitative description, we develop a deep learn-

ing framework based on neuron projection, which can transform 3D neurons into 2D

images and learn effective neuron features. Regarding the large-scale neuron mining,

binary coding methods are introduced, which can transform feature vectors into short

binary codes for real-time indexing and mining. Regarding the interactive neuron ex-

ploration, we visualize 3D neurons using augmented reality (AR) techniques, where

users can provide relevance feedback to further improve the mining performance. The

proposed methods are validated on the currently largest neuron database including

more than 58, 000 neurons, achieving state-of-the-art performance in comparison with

other related methods. More importantly, we demonstrate use cases of our framework

in multiple neuron analysis and exploration tasks, showing its potential benefits in

facilitating the research of neuroscience.
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CHAPTER 1: INTRODUCTION

The brain is the most complex piece of organized matter in the known universe. Un-

derstanding the brain function in health and disease is one of the greatest challenges

facing modern science. The human brain contains billions of neurons and trillions

of synapses. Investigating the morphology of massive neurons is an important topic

in brain and neuron science, since morphology plays a major role in determining

neurons’ connectivity and thus function. Recent frontiers (e.g., BigNeuron [3] and

NeuroMorpho [1] projects) have greatly facilitated the research in neuron morphol-

ogy, resulting in an increasing number of neurons that are reconstructed and added

to these public repositories. However, the sheer volume and complexity of these data

pose significant challenges for computational analysis, preventing the realization of

the full potential of these data, e.g., efficiently finding neurons sharing similar mor-

phologies, identifying neuron types, correlating neuron morphologies with properties,

all of which require a deep and exhaustive mining of large-scale neuron datasets.

On the other hand, data mining and knowledge discovery is a long-term research

topic in data science and machine learning, which have been widely applied in many

academic and industrial scenarios (e.g., computer vision, social media). We advocate

that this can also benefit the research in neuronal morphology. Previously, neuron

mining only considers certain neuron properties (e.g., brain regions, transmitters)

with few reconstructed data sets [4, 5, 6, 7]. In recent years, in response to the above-

mentioned pressing need, researchers have started to investigate neuron mining, and

achieved preliminary results in neuron retrieval, clustering and comparison [8, 9, 10].

Nonetheless, most of these approaches are not sufficiently efficient or robust when

handling large-scale databases, as they are usually simple variants of data mining
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methods from other domains.

In fact, there are multiple unique challenges in the field of neuromorphological

analytics, which may prevent the direct application of existing approaches to neu-

ron mining: 1) The differences among neuron morphologies can be very subtle, i.e.,

fine-grained differences, as neurons have tree-structured topology, which is hard to

represent and differentiate. In addition, some functionally unrelated neurons can

be visually similar. 2) Fast-growing neuron databases restrict the computational ef-

ficiency. For example, there are more than 80, 000 reconstructed neurons that have

been added to the NeuroMorpho database [1]. After the completion of the BigNeuron

project [3], a significant number of neurons will be reconstructed. Efficient mining

for large-scale and continuously increasing databases is an urgent demand in recent

trends. 3) The annotations of neurons are usually not ready for supervised machine

learning. Some existing databases only provide coarse annotations (e.g., primary

brain regions, cell classes), which are not sufficient to provide comprehensive labels

for different types of neurons. It is desired to bring domain experts into the com-

putational loop, such that only a small amount of supervised information will be

incorporated to ensure the performance. Additionally, how to visualize neuron mor-

phologies and the analytical results for user exploration are also unsolved challenges.

Considering the above discussed challenges, the goal of this dissertation is to design

an effective framework for neuroscientists to interactively explore large-scale neuron

databases, in real-time. Different from traditional approaches based on quantita-

tive computation and experimentation [11, 12, 13, 14], this dissertation presents new

avenues which assembles the massive neuron morphologies and provides an unified

framework to explore and analyze different types of neurons, which will demonstrate

its superiority in efficiency, accuracy, scalability and robustness. Particularly, as

shown in Fig. 1.1, the neuron mining framework starts with feature representation
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Figure 1.1: Overview of our proposed framework, including neuronal feature repre-
sentation, binary coding and interactive neuronal mining.

for the quantitative description of neuromorphologies, which is the basic step for

neuron exploration. Subsequently, instead of directly mining neurons using feature

vectors, binary coding techniques are introduced which can enable real-time indexing

and clustering by compressing long features into short binary codes. Afterwards, in-

teractive strategy are employed to improve the retrieval precision with a small amount

of domain experts’ feedback. Based on the fine-tuned retrieval results, multiple ap-

plication can be developed, such as neuron clustering, comparison, classification and

further high-level knowledge discovery. All the analytical results will be organized in

an online website for users to mining neurons in real-time. Additionally, advances of

augmented reality (AR) techniques with Microsoft HoloLens headsets are employed

for 3D neuron visualization and exploration.

In this dissertation, the research work for computational neuron analytics has the

following contributions, which will be elaborated in each chapter:

1. A deep learning based framework is proposed for the feature representation

of 3D neuron morphology. The framework first presents a neuron projection

method to transform each 3D neuron into 2D images with three angles of view.
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The projection strategy can preserve the spatial morphologies from the original

data and transform 3D neurons in a suitable format for deep feature learning.

Then an unsupervised deep neural network is introduced to automatically learn

neuron features from the projected 2D images. To the best of our knowledge,

this is the first attempt that applies deep learning techniques in the analytics

of 3D neuron morphology.

2. Two binary coding methods are introduced in tacking the exploration of large-

scale neuron database. The first binary coding method is based on the maximum

inner product search (MIPS), which can learn effective coding functions for the

linearly inseparable and differentially subtle neuron morphologies. The second

binary coding method is based on the online updating schemes, which can effi-

ciently update the coding functions on-the-fly from the continuously expanding

neuron databases. In addition, feature hierarchy strategy is proposed to reveal

the similarity level of different neuron features during binary coding.

3. To further improve the neuronal mining performance and reduce the seman-

tic gap between neuron morphologies and functional properties, an interactive

strategy is presented to bring users in the loop. The interactive strategy can

re-consider and re-rank the mining results based on the relevance feedback pro-

vided by users. More importantly, the relevance feedback can be also employed

to update the similarity measure among neurons in the whole database.

4. Based on the above methods designed for neuron mining, multiple tools are

developed in assisting neuron exploration for users, including an online web-

site for real-time neuronal retrieval, and a neuron visualization program using

advanced techniques of augmented reality (AR) with Microsoft HoloLens head-

set. Moreover, this dissertation also demonstrates several use cases for neuron

identification, comparison and pattern discovery.
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The rest of this dissertation is organized as follows: Chapter 2 reviews recent fron-

tiers of neuron morphology, content-based image retrieval and binary coding. Chapter

3 provides solutions for the quantitative descriptions of 3D neuron morphology. Fol-

lowed by Chapter 4 introduces the algorithm details of large-scale methods for neuron

mining. Chapter 5 presents the algorithm design of interactive neuron exploration,

including relevance feedback based mining and neuronal visualization. Afterwards,

Chapter 6 demonstrates the developed online system for real-time neuronal retrieval

and augmented reality program for neuronal visualization. Finally, Chapter 7 con-

cludes the dissertation and discusses future works.



CHAPTER 2: RELATED WORKS

The works in this dissertation have a strong multidisciplinary component that in-

volves a nexus of ideas from neuroscience, machine learning, and information retrieval.

This chapter provides an introduction of related frontiers in the field of 3D neuron

morphology, binary coding, and content-based image retrieval.

2.1 Neuron Morphology

In recent years, the research of neuron morphology has a significantly improve-

ment, owing to the advances of neuron tracing and reconstruction techniques. Neu-

ron tracing aims to manually or automatically reconstruct 3D neuron morphologies

from fluorescence or electron microscopy images. Compared with 2D neuronal im-

ages, 3D morphological data reflect spatial structure of the neuron cell with more

comprehensive information [15], e.g., fine-grained details of structures, brunches, bi-

furcations. From original microscopy images to the 3D neuron morphological data,

neuron tracing consists a number of processing step, including image preprocessing

(e.g., noise reduction, deconvolution, mosaicking), segmentation (e.g., soma, dendritic

trees, spines, axons segmentation), reconstruction and connection [16, 17, 18, 19, 20].

In recent years, there are many tracing and reconstruction software released which

make 3D neuron morphological data easier to acquire. Fig. 2.1 illustrates a microscopy

image from neuron slices [21] and its corresponding 3D morphological data through

Vaa3D software [2]. As shown in Fig. 2.1(b), the 3D morphological data provides

more precise details for neuron cells which can facilitate the research of quantitative

descriptions for further retrieval and analysis.

Benefited from algorithms and software of neuron tracing, more and more 3D mor-
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(a) (b)

Figure 2.1: From microscopy neuron image to 3D morphological data: (a) original
microscopy slices; (b) 3D neuron morphology with quantitative measures.

phological databases are released in recent years. For example, FlyCircuit [22] is one

of the early database that collected tens of thousands of reconstructed neurons from

the Drosophila’s brain. More recently, the successes of BigNeuron project [3] have

greatly accelerate the generation of 3D neuron data, where massive neurons are re-

constructed and added to the currently largest neuron morphological database, i.e.,

NeuroMorpho [1]. As shown in Fig. 2.2 (images adapted from NeuroMorpho.Org [1]),

the number of reconstructed neurons in NeuroMorpho [1] has increased from 2, 000 to

86, 000 in recent ten years, which are still fast growing. The NeuroMorpho database

currently include the reconstructed neurons from 53 species, 278 brain regions and

514 cell types, where the data were provided by 455 archives around the world. This

huge neuro-morphological database provide a good opportunity for us to explore and

analyze neurons in new ways.

When analyzing the 3D neuron morphology, one critical problem is feature rep-

resentation, i.e., how to quantitatively describe 3D neurons which can accurately

indicate their similarity and difference among original data shape. Unlike 2D images

which can extract features with many well-studied algorithms, how to extract effective

features from 3D neuron data is still a challenging task. For neuron cells, from axon
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Figure 2.2: Number of neurons increased in NeuroMorpho [1] database, which demon-
strated a fast growing in recent years.

to soma and then to dendrite, they usually express tree-topological structures. In pre-

vious articles [23, 24, 25, 8, 26, 27, 28, 29], researchers defined multiple quantitative

measurements based on this tree-topological structure, such as neuron’s total height,

number of branches, the Euclidean distance from compartments to somas, the angle

between two terminal branches etc. Then these quantitative measurements are com-

bined together as the feature representation of each 3D neuron data. However, these

hand-crafted features are designed for previously neuron analytical tasks with small

sized datasets (e.g., including hundreds to thousands of neurons). When tackling

much larger neuron datasets (e.g., including tens of thousands or more neurons), the

representational performance cannot be guaranteed. Therefore, new methods should

be developed for the feature representation of 3D neuron morphology.

2.2 Binary Coding and Hashing

In recent years, binary coding and hashing have been widely used to solve large-

scale problems in machine learning, computer vision and other related areas. After

feature representation of 3D neuron morphology, how to efficiently tackle the large-

scale database is also a critical problem. For the binary coding and hashing methods,
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by compressing long feature vectors into short binary codes, the storage and similarity

search will be much more efficient in binary Hamming space compared with high

dimensional feature space. Therefore, binary coding and hashing techniques can

be also employed to compress neuronal features and solve analytical problems of

large-scale neuron databases. However, the key question is how to obtain binary

coding or hashing functions which can not only split feature vectors via binary codes,

but also keep similarities among original data. Recently, multiple articles [30, 31]

reviewed recent advances of binary coding and hashing, with various types of methods,

including data-independent and data-dependent, supervised and unsupervised, linear

and nonlinear hashing algorithms. This section briefly review the taxonomy and

methods of binary coding and hashing, and discuss their applicability for the large-

scale problems of neuronal datasets.

Data-independent methods usually design generalized binary coding or hashing

functions to compact any given datasets. Locality-Sensitive Hashing (LSH) and its

variants [32, 33, 34] are one of the most representative data-independent methods.

This type of methods ensures the data similarity with long binary hash bits and mul-

tiple hash tables. However, these methods may not suit neuron retrieval problem

because of the specificity of the datasets, i.e., the tree structure of neurons and their

non-separability in Euclidean space make them different with other datasets. Another

category is the data-dependent methods, whose binary coding functions are obtained

through learning from given datasets for particular problems. In recent years, a

large number of learning-based methods are proposed, including but not limited to

Iterative Quantization (ITQ) [35], Isotropic Hashing (IsoHash) [36], Minimal Loss

Hashing (MLH) [37, 38], FastHash [39], etc. Some of them are supervised methods,

i.e., including classification labels, which have already achieved excellent performance

in large-scale retrieval. But current neuron database such as NeuroMorpho [1] lack

enough normative annotations for every neuron. Therefore, unsupervised binary cod-
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ing should be a better choice for neuron retrieval. Another taxonomy of binary coding

methods is based on the category of coding function, i.e., whether the coding function

can transform features into linear or non-linear space. As mentioned before, neuron

morphological features are measured based on the tree-like structure, while the tree-

like structures of unrelated neurons sometimes appear similar which makes them

hard to distinguish in linear space. Compared with linear binary coding/hashing al-

gorithms, nonlinear algorithms usually generate more sensitive binary codes to divide

data in nonlinear space. Representative methods such as Kernel-Based Supervised

Hashing (KSH) [40], Spectral Hashing [41], Anchor Graph Hashing (AGH) [42], In-

ductive Manifold Hashing (IMH) [42], etc., they construct coding functions based

on nonlinear kernel matrix or manifold structure. However, one disadvantage of the

above mentioned nonlinear methods is that they fail to consider the diversity among

different features when learning binary codes.

2.3 Content-based Image Retrieval

Over the past 25 years, Content-based Image Retrieval (CBIR) has been one of

the most vivid research topics in the field of computer vision. Many CBIR methods

are developed for accurate and efficient image retrieval. Especially in recent years,

with the ever-increasing number of digital images (e.g., ImageNet [43], COCO [44],

PASCAL VOC [45], etc), CBIR has moved towards the era of big data. Massive

amounts of images can provide rich information for comparison and analysis, and

thus facilitate the generation of new algorithms and techniques that can tackle image

retrieval in large databases. As a comprehensive application in computer vision and

machine learning, CBIR has developed many branches for different concerns and

targets. In general, content-based image retrieval can be divided into two stages, i.e.,

feature extraction to represent images and feature indexing to find relevant samples.

Deep learning [46] is one of the most popular methods for feature representation that

is particularly suitable for large image databases, where massive amounts of data
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can boost the retrieval performance by training deep and complex neural networks

with millions of parameters [47, 48]. For the feature indexing, the key problem is

computational efficiency, i.e., similarity searching in millions of images with thousand

dimensional features vectors. Methods such as vocabulary trees [49] and hashing [30]

can efficiently tackle this problem, either through changing the indexing structure or

compressing the original features.

In addition to the feature extraction and indexing, when the retrieved databases do

not have enough annotations, simply analyzing massive image data may not results in

accurate retrieval results, due to the existed gap between images and their semantic

information. In order to improve retrieval performance and reduce the semantic

gap, some CBIR systems introduce domain experts/users in the loop, which can

interactively provide relevance feedback for the previous retrieval results. Generally,

for an image query and its coarse retrieval results, there are three kinds models to

give relevance feedback: (1) positive feedback, where the users only need to select

relevant images; (2) positive-negative feedback, where the users need to select both

relevant and irrelevant images; (3) positive-neutral-negative feedback, where the users

need to specify the degree of relevance for all the retrieved images. A comprehensive

review of the early work on relevance feedback for CBIR is presented in [50]. Most

of the early approaches use the marked images as individual queries and combine

the retrieval results to refine the similarity weights of relevant images [51, 52]. In

recent years, many algorithms in the machine learning field have been used for the

interactive CBIR problem, e.g., random forests [53], graph-cut [54], random walk [55],

manifold learning [56]. All these methods can improve the retrieval performance with

several rounds of interactive feedback. However, it is still a challenging issue when

applying user interaction in large-scale neuron databases.



CHAPTER 3: QUANTITATIVE DESCRIPTIONS FOR 3D NEURON

MORPHOLOGY

3.1 Motivation

Understanding neuron morphology is a fundamental task to explore neuronal cir-

cuits, functional and physiological properties. Recent frontiers in neuron tracing and

reconstruction (e.g., BigNeuron [57], NeuroMorpho [58]) have greatly facilitate the

research of neuron morphology. Increasing number of neurons are digitally recon-

structed and added to the public repositories with tens of thousands of neurons [1, 3].

For each reconstructed neuron, their morphologies are recorded in a SWC format file

including a set of neuron nodes with segment types, locations, radius, and connec-

tions [59]. Accordingly, these huge amount of morphological data bring new oppor-

tunities for neuron mining and knowledge discovery.

In recent years, neuron morphology has been investigated based on computational

models and machine learning techniques. Scorcioni et al. [25] first developed L-

measure tool for the quantitative measurement of neuron morphology, which can

compute neuroanatomical parameters from 3D reconstructed neuron data. Costa et

al. [24] proposed the concept of neuromorphological space and identified the most

important geometrical features in neuron cell, including neuron’s total length, branch

numbers, etc. With these measurement based features, multiple tools and meth-

ods have been proposed for the analytics of neuron morphology. For example, Wan

et al. [8] developed BlastNeuron for the comparison, retrieval and clustering of 3D

neuron morphology. In BlastNeuron, they employed L-measure tool and moment in-

variants as morphological features for similarity search. Costa et al. [26] presented

NBLAST to measure pairwise neuronal similarity by considering both position and
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Figure 3.1: Overview of the proposed framework for the feature representation of 3D
neuron morphology.

local geometry, decomposing neurons into short segments.

By employing quantitative measurements as neuronal features, the above methods

have achieved many successes in the research of neuron morphology. However, with

the continuously expanding of neuron databases, neurons belonging to different cate-

gories can express similar morphologies (indicating small inter-class variances), while

neurons belonging to same categories can express different morphologies (indicating

large intra-class variances) [60]. Thus, traditional “hand-crafted” measurements may

not work well in the representation of neuron morphologies, as well as the exploration

of large-scale neuron databases. On the other side, deep learning has become a kind

of advanced techniques for the feature representation in many fields, such as com-

puter vision, medical image analysis, and speech recognition [46]. Nevertheless, for

the feature representation of 3D neuron morphology, directly applying deep learning

methods still faces two major problems: 1) the tree-structure of neurons are usually

very sparse in 3D space, which are not suitable for the training of 3D neural networks;

2) the spatial information of neuron nodes, i.e., location, radius, and connection, need

to be considered but are hard to embed in deep models.

To address the above problems, this dissertation develops a deep learning based

framework for the feature representation of 3D neuron morphology. Fig. 3.1 presents

the overview of our framework. At first, to overcome the tree-structural sparsity,
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3D neuron morphological data are transformed into 2D images through orthogonal

projection. The spatial information of neuron nodes can be greatly preserved by

projecting nodes’ coordinates, radius, and connections in three angles of view. The

projected 2D neuron images are subsequently set as input to train an unsupervised

deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The network

learns to recover the input image by exploring intrinsic deep feature representation

among neuron morphologies. After training the SCAEs model, the learned deep

features are fused with the traditional hand-crafted features for comprehensive and

accurate representation of 3D neuron morphologies. The fused neuron features can

be further employed for similarity searching and knowledge discovery. To the best of

our knowledge, this is the first attempt that applies deep learning techniques in the

analytics of 3D neuron morphology.

3.2 Methodology

This section presents the theoretical and technical details of the framework for the

quantitative description of 3D neuron morphology, including 3D neuron projection,

deep feature representation, and feature fusion.

3.2.1 3D Neuron Projection

As discussed above, the traditional hand-crafted features are insufficient to rep-

resent each neuron in large-scale databases, new avenue should be explored for the

quantitative description of 3D neuron, based on recent advances of deep learning.

Considering the original neuron morphological data (i.e., the SWC format files [59])

provide the spatial coordinate of each point, an intuitive solution is to employ 3D

deep neural networks that can directly learn deep features from these 3D point sets.

Unfortunately, this approach is impractical due to three reasons: (1) training 3D

neural networks are usually very time-consuming, particularly when tackling large

neuron databases; (2) the 3D point sets and their connections in each neuron are
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(a) (b) (c) (d) (e)

Figure 3.2: The pipeline of transforming 3D neurons into images: (a) the original
neuron data visualized by Vaa3D [2]; (b) the 3D points of neuron data in initial
orientation; (c) the 3D points after principal component analysis (PCA); (d) the
projection of each point in three angles of view; (e) the generated binary images by
linking each point with their parent points.

composed based on the tree-topological structure, which are extremely sparse in 3D

space; (3) Neurons have dramatically different scales and different numbers of point

sets (from hundreds to tens of thousands) that hard to be processed in a generalized

framework. Therefore, how to adapt the 3D neuron data with a suitable modality for

deep learning is a critical step in this feature representation task.

Taking the above problems into account, this dissertation first proposes a method

to transform 3D neurons into 2D binary images, preserving their primary morpholo-

gies in the meanwhile. Currently, 3D neuro-morphological data are stored in the SWC

format file with hundreds to tens of thousands of nodes [59]. For each node, its spatial

information are mainly determined by the point location (i.e., x, y, z coordinates),

radius r (i.e., indicating thickness of neuronal dendrite), and connection p (i.e., the

connectivity with parent nodes). Therefore, unlike previous 3D deep learning prob-

lems which can directly handle the point sets, neuronal nodes and their composed

tree-structures also need to be considered in the feature representation of 3D neuron

morphology.

Here, denoting the 3D neuronal data as xi ∈ Rni×5, which includes ni points. Each

node include the above spatial information with 5 dimensions, i.e., x, y, z, r, p. Ac-

cording to Fig. 3.2, our neuron projection method can transform each 3D neuron
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data into 2D images, preserving these 5 dimensional information in the meanwhile.

According to Fig. 3.2, given a 3D neuron data xi, the location of its 3D points can

be first plotted. Considering the initial neurons may not oriented properly, the prin-

cipal component analysis (PCA) algorithm can be then employed to shift and rotate

neurons to a normalized axis. For the point set of each neuron (i.e., a ni× 3 matrix),

the PCA algorithm first compute their three dimensional mean value (i.e., a 1 × 3

vector) and coefficients (i.e., a 3 × 3 matrix). Then each point can be shifted and

rotated by the mean value and coefficients respectively. This transformation insures

that similar 3D neurons can be transformed into similar 2D images after the follow-

ing neuronal projection, regardless of their initial orientation. Subsequently, all 3D

points can be orthogonal projected into three angles of view, i.e., the x-y, x-z, and

y-z plane, respectively. The three angles’ projection can greatly preserve the spatial

information of 3D neurons. Moreover, considering the projected images haven’t re-

flected neuron’s original tree-structure, two operations are introduced for each node

in the projected images: 1) embedding each node’s radius in the image, where all

pixels within the node’s radius are assigned as 1; 2) each node is connected to its

corresponding parent node, where all pixels residing on the line segment connecting

the two nodes are assigned to 1. After the above operations, three grayscale images

can be generated from a 3D neuron data. The grayscale images can preserve the

original neuronal spatial information and tree-topological structure as much as possi-

ble, and also transform the 3D neuron data into a usable modality for deep learning.

In general, transforming 3D point sets into binary images can significantly improve

the computational efficiency when training deep neural networks. More importantly,

this method can preserve the structure of neuron morphologies by the three angles’

orthogonal projection and child-parent points linking.
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Figure 3.3: The architecture of our stacked convolutional auto-encoders, including
convolutional encoder and decoder two parts.

3.2.2 Feature Learning using SCAEs

After 3D neuron projection, the generated 2D images can be employed to train

deep neural network for the neuronal feature representation. In recent years, there

are varieties of deep neural networks that designed for different datasets and tasks.

In current neuron databases, there are no sufficient annotations to identify and clas-

sify each neuron, which only provides coarse brain regions, cell types, transmitters,

etc. Thus only unsupervised deep neural network can be used in this case. Besides,

neuron’s tree-structures, e.g., dendrites and bifurcations, also need to be considered

in the network. Here, we introduce the stacked convolutional autoencoders (SCAEs),

which can explore the intrinsic structure of neurons in an unsupervised manner.

The general structure of SCAEs is illustrated in Fig. 3.3. From left to right, the

network can be roughly divided into encoder and decoder two parts. The encoder

subnetwork contains 6 convolutional layers and 5maxpooling layers, which transforms

a 128× 128 grayscale image into a 64× 4× 4 tensor which is further embedded into a

1024 dimensional feature vector via a fully connected layer. The decoder subnetwork is

designed for recovering the grayscale image from the output of encoder network with 1

fully connected, 5 upsampling, 6 convolution and 1 deconvolution layers. In addition,

batch normalization and ReLU activation are employed right after each convolution.

Furthermore, tanh function is adopted to reconstruct the grayscale image for the

deconvolution in the last layer of decoder subnetwork. Detailed configurations are

illustrated in Table 3.1. The network is optimized through SGD algorithm using L1
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Table 3.1: Configurations of SCAEs network. The network can be divided into two
subnetworks: encoder and decoder. ‘dim’ represents the dimension of the ouput of a
layer. ‘batchnorm’ means batch normalization used in the layer. ‘relu/tanh’ indicates
the activation function. ‘size’ is the kernel size used.

type dim size stride
Input 1
Encoder
conv2d-batchnorm-relu 16 11x11 4
maxpooling 2x2 1
conv2d-batchnorm-relu 32 5x5 1
maxpooling 2x2 1
conv2d-batchnorm-relu 64 5x5 1
maxpooling 2x2 1
conv2d-batchnorm-relu 96 3x3 1
maxpooling 2x2 1
conv2d-batchnorm-relu 128 3x3 1
maxpooling 2x2 1
conv2d 128 3x3 1
Decoder
conv2d-batchnorm-relu 128 3x3 1
upsampling 2x2 1
conv2d-batchnorm-relu 96 3x3 1
upsampling 2x2 1
conv2d-batchnorm-relu 64 3x3 1
upsampling 2x2 1
conv2d-batchnorm-relu 32 3x3 1
upsampling 2x2 1
conv2d-batchnorm-relu 16 3x3 1
deconv2d-tanh 1 12x12 4

loss function,

L = ‖x−Decoder(Encoder(x, θe), θd)‖1, (3.1)

where x is the input 2D neuron image, θe, θd is the parameter of encoder and decoder

subnetwork respectively.

After training the SCAEs, the decoder part can be removed. Given a neuron data,

its three binary images are sequentially set as the input in the trained SCAEs. Then

their last encoder layer’s output can be combined together as the deep feature of that
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input neuron.

3.2.3 Feature Fusion

Considering the information loss from 3D neuron data to binary images, the unsu-

pervised deep neural network usually cannot explore the fine-grained details in image

data. The proposed SCAEs may also not work well in fully representing the 3D neu-

ron morphology. Therefore, this subsection further proposes to fuse the deep features

with the traditional hand-crafted features to pursue more powerful neuronal repre-

sentations and accurate retrieval results. For the deep features, as they are usually

noisy and redundant with thousands of dimensions, PCA algorithm is first employed

to reduce the dimension and preserve the main components in deep features. For

the hand-crafted features, quantitative measurements is computed in each 3D neuron

based on the L-Measure toolbox [25], including global, branch, and bifurcation three

levels of measurements [28].

With regards to fusing two features, there are mainly two levels of fusion in the field

of image retrieval, i.e., feature-level and decision-level. For the feature-level fusion,

the goal is to combine two or more feature vectors into a single one with more discrim-

inative power than any of the input feature vectors. This fusion can be implemented

before similarity searching. For the decision-level fusion, the goal is to weight the

retrieval results from different features and fuse these results via techniques such as

majority voting [61]. Despite the fact that the decision-level fusion has demonstrated

excellent performance in many image retrieval tasks [62, 63], it may not be suitable

in our case that the method was developed towards large neuron databases. Par-

ticularly, the decision-level fusion in our case, i.e., large-scale neuron morphological

retrieval, needs to learn binary coding functions and search the whole database with

different kind of features respectively, which are inefficient for large-scale retrieval.

Therefore, this article directly combines the deep features with the hand-crafted fea-

tures together before binary coding. Practical applications demonstrate that such
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feature-level fusion can achieve excellent performance in large-scale neuron retrieval.

3.3 Experiment

This section first evaluates the effectiveness of our proposed neuron feature repre-

sentation method, and then provides discussions about its advantages and limitations.

3.3.1 Experimental Setting

In the experiment, NeuroMorpho database [1] is adopted to validate the perfor-

mance, which is the largest collection of publicly accessible 3D neuronal reconstruc-

tions and associated metadata. Particularly, this experiment considers in total 58, 414

valid neurons for feature representation and evaluation (excluding neurons that can-

not be read and measured by the L-measure tool, accessed by June 6, 2017). In the 3D

neuron projection, the method projects and normalizes each neuron into three images

with the size of 128 × 128. A weight decay of 10−4 and momentum of 0.9 are set in

the SCAEs model. The whole neural networks are trained end-to-end in 100 epochs

with an initial learning rate of 0.01. To train the SCAEs model, 30, 000 neurons are

randomly selected, i.e., 90, 000 projected 2D images in total. For the hand-crafted

features, L-measure toolbox is employed to extract 38 quantitative measurements,

following the setting with previous articles [28, 8, 26, 9], which have achieved the best

representational performance in several neuron analytical tasks. All experiments are

carried out on a desktop with 1.6GHz processor of twelve cores and 128G RAM.

3.3.2 Evaluation of Neuron Feature Representation

To evaluate the performance of neuronal feature representation, the experiment em-

ploys the metric of neuron morphological retrieval, i.e., neuron’s similarity searching in

a neuron database. Particularly, this part compares the performance of four methods

related to neuron feature representation and retrieval, including our learned deep fea-

tures, the fused features, the above 38 dimensional hand-crafted features [28, 8, 26, 9]

and the MIPS based binary coding features [28], which are abbreviated as Deep-fea,
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Table 3.2: Comparing the average retrieval precision of four methods under different
number of retrieved neurons.

top-10 top-20 top-30 top-50

Deep-fea 0.6851 0.5534 0.4729 0.3710

MIPS-fea 0.8396 0.7605 0.6920 0.5982

Hand-fea 0.8586 0.7776 0.7239 0.6407

Fused-fea 0.9130 0.8377 0.7943 0.7337

Comb-fea, Hand-fea, and MIPS-fea respectively. Hand-fea and MIPS-fea are both the

state-of-the-art features for neuronal retrieval. For the testing data, the Drosophila

Melanogaster’s projection neurons are selected as queries for which the brain region

is the olfactory antennal lobe, and the cell types are principal cell and uniglomerular

projection (233 such projection neurons in total, denoted as uPNs). This selection of

query neurons is also consistent with previous articles [8, 26, 9, 28], since uPNs are

the one kind of most fine-grain identified neurons in the NeuroMorpho database [1].

Table. 3.2 presents the average retrieval precision of the four comparative methods.

The average retrieval precision is defined as the average percentage of same class

neurons in all retrieved neurons after evaluating the 233 uPNs. For a query uPN,

the top-10 retrieval precision denotes the percentage of uPNs in its 10 most similar

neurons (except itself) after the feature comparison with the whole 58, 414 neurons

based on the Euclidean distance. For the Deep-fea, we employ PCA to compress the

original deep feature into 40 dimensions. The Comb-fea is the combination of Deep-fea

and Hand-fea. The MIPS-fea generates 32 bits of binary codes as neuronal features.

According to Table. 3.2, the Comb-fea can achieve the highest retrieval precision

compared with other three methods. The Deep-fea also achieves reasonable retrieval

precision, which validates that the deep learning based methods are effective for the

feature representation of neuron morphology. The results are mainly benefited from

our designed 3D neuron projection strategy, which can preserve the tree-topological
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Figure 3.4: Four query neurons (red) and their corresponding top-5 similar neurons
(blue) after searching in the NeuroMorpho [1] database, which illustrate the morpho-
logical similarity after using the proposed feature representation method.

structure of 3D neuron morphology in 2D binary images. The introduced SCAEs

model has the ability to explore neuronal dendrites and bifurcations for more accurate

representation.

More importantly, for the results of Comb-fea, we find that the retrieval perfor-

mance has a significant improvement after combining the learned deep feature with

the traditional hand-crafted feature. Based on the overview in Fig. 3.1, the left three

grayscale images are projected from original 3D neuron, while the right three are the

corresponding reconstructed images after the SCAEs decoder. It can be observed that

the reconstructed images are able to preserve the overall structure from inputs, while

most fine-grained details are lost. These results indicate that our learned deep features

are more likely to explore and represent holistic structures in neuron morphologies. In

contrast, the holistic structures in traditional hand-crafted features are represented by

several primary measurements, e.g., neuron’s total height, length, volume, etc, which

can not well identify and discriminate neurons in large-scale databases. Therefore,

the traditional hand-crafted features and the learned deep features are complementary
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Figure 3.5: Average retrieval precision from top-1 to top-100 samples of uPNs: com-
parison of three sized images for SCAEs model training.

with each other in the representation of 3D neuron morphology.

In addition, we randomly select four neurons as queries and provide their top-5

most similar neurons after retrieval using the combined features. The neurons are

displayed in Fig. 3.4 using the Vaa3D software [2], where the reds are queries and the

blues are retrieved neurons. Fig. 3.4 validates that the proposed feature representation

method can effectively find morphologically similar neurons in large-scale database.

These results are useful in many neuron analytical tasks. For example, the similar

neurons can be employed for neuron comparison to further analyze and explore the

association of detailed arborization patterns and functional properties [8].

3.3.3 Discussion

We discuss the parameter settings in the proposed feature representation frame-

work, as well as the benefits and limitations when applying the proposed methods for

neuro-morphological analysis.

Parameter Settings: In the proposed framework, the SCAEs model is trained

based on the projected 2D images with the size of 128× 128. This setting is a trade-

off between retrieval precision and computational efficiency. Fig. 3.5 records the

average retrieval precision from top-1 to top-100 samples of uPNs, with the projected
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image size of 128 × 128, 256 × 256, 512 × 512 respectively. All three sized images

are transformed into 1024 dimensional feature vectors in SCAEs models. According

to Fig. 3.5, the retrieval performance haven’t change too much, i.e., no more than

2% difference. This is mainly because of the properties of the SCAEs, which can

mainly explore and represent holistic structures in neuron morphologies (discussed

in Section 3.3.2). While the holistic structures in neurons do not have remarkably

difference under different image resolutions, e.g., from 128×128 to 512×512. On the

other side, their computational efficiency has a tremendous difference. For example,

in the experiment, it only costs 3 hours to train the SCAEs model using 90, 000 neuron

images with the size of 128×128. While the training time is 2 days using the 512×512

sized images. Therefore, we projected 2D images with the size of 128×128 which can

achieve the state-of-the-art performance under sustainable time complexity.

Advantages: The proposed framework achieve large-scale neuron morphological

retrieval with superior accuracy and efficiency, demonstrating excellent performance

in assisting neuron exploration and analysis. These results mainly benefited from

the proposed neuron feature representation method. When neuron databases are

large, the traditional hand-crafted features cannot fully represent and differentiate

each neuron. Thus we design a novel feature representation method using deep neu-

ral networks, which can transform 3D neuron data into 2D images and automatically

learn features end-to-end. The learned deep features have different aspects of repre-

sentation compared with the hand-crafted features (e.g., holistic structures compared

with branch/bifurcation topologies). Thus their combination will accordingly more

representative for the 3D neuron morphology.

Limitations: There are also some limitations in the proposed neuron retrieval

framework. One critical limitation is the information loss when transforming 3D

neuron data into 2D images. This limitation mainly reflects in two situations: 1) the

2D images cannot preserve the fine-grained spatial structures in neurons, especially
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(a) (b)

Figure 3.6: Limitations in our neuron projection strategy, (a) the 2D image can-
not preserve the fine-grained spatial structures in neurons; (b) some neurons in the
NeuroMorpho [1] are only two dimensions.

for the neuron with complicated morphologies, e.g., the right dendrites in Fig. 3.6(a);

2) some neurons provided by the NeuroMorpho database [1] are only two dimensions,

i.e., the third dimension is a fixed constant. As shown in Fig. 3.6(b), in such case, the

proposed method can only get straight lines in the second and third projected image.

These two situations may influence the retrieval results for some specific neurons.

Another limitation is the introduced deep neural networks. The unsupervised

SCAEs model can only explore the holistic information among neuron morphologies,

where the most fine-grained information are lost. Despite the deep features are the

good complementary with hand-crafted features, the neuronal feature representation

framework are not fully automatic, which still need to extract L-measure features and

combine two kinds of feature together. Additionally, due to the fact that the deep

learning framework is unsupervised, the deep features may not always accurate since

the existed semantic gap between the learned features and the biological properties

among massive neurons.
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3.4 Summary

This chapter attempts to investigate deep learning techniques in tackling the fea-

ture representation of 3D neuronal morphology. A generalized framework is proposed

based on the neuronal projection, unsupervised deep neural networks and feature fu-

sion, which achieves superior performance compared with the state-of-the-art. Nev-

ertheless, there are several aspects that can be explored to further improve the per-

formance. For example, in 3D neuron projection, the three grayscale 2D images are

related to each other, since they are reflections of a common neuron in different view

angles. These relations should be considered and utilized in the deep neural network.

Additionally, our current framework cannot achieve the fully automatic feature rep-

resentation. In the future, we will study how to embed the traditional hand-crafted

features in a deep neural network to compute neuron features end-to-end.



CHAPTER 4: LARGE-SCALE NEURON MINING

4.1 Motivation

After acquiring morphological features from 3D neuron data, this dissertation aims

to explore efficient neuron mining in large-scale databases. Regarding neuron mining

and exploration, multiple challenges need to be investigated, e.g., efficiently finding

neurons sharing similar morphologies, identifying neuron types, correlating neuron

morphologies with properties. To achieve the above challenges, one basic solution is

neuronal retrieval, i.e., given a query neuron, finding neurons sharing similar mor-

phologies in existed neuron databases, where the neuron types, morphologies and

properties can be accordingly analyzed. This section presents solutions for neuron

retrieval, particularly in large-scale and continuously expanding neuron databases.

Morphology-based neuron retrieval is made possible because of the recent rapid

advancements in neuron tracing and neuron anatomy techniques [64, 65, 66, 67].

In the field of neuron morphological retrieval and analysis, Wan et al. [8] designed

BlastNeuron for automated comparison, retrieval and clustering of 3D neuron mor-

phologies. In the retrieval stage, BlastNeuron searches for similar neurons via the

normalization of rank scores in terms of the closeness of feature vectors. Despite

its high accuracy, this method could be inefficient when tackling large-scale neuron

databases. Costa et al. [26] presented NBLAST, a sensitive and rapid algorithm, for

measuring pairwise neuronal similarity. They developed an online neuron similarity

search program which can query single neurons or fragments against large databases,

based on the measure of short segments in neurons. Subsequently, Mesbah et al. [27]

proposed a data-driven hashing scheme, i.e., hashing forest, to search among large

neuron databases. By establishing multiple unsupervised random forests, 128 or more
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binary bits are generated to represent morphological features. Hash forest algorithm

has achieved efficient and accurate results in neuron retrieval and analysis [29, 9].

Nonetheless, it usually needs a large number of bits (e.g., larger than 128), while its

efficiency can be further improved with shorter binary codes. More importantly, the

encoding process relies on the embedding of the Euclidean distance, which may not

be a suitable similarity measure for neuron retrieval issue, as features of neuron data

usually lay in complex feature spaces that may not be linearly separable. Therefore,

advanced binary coding and hashing methods to solve these challenges are important

for efficient and accurate retrieval.

As described in [27], binary coding and hashing techniques have achieved great

successes in efficient retrieval of large-scale databases, with many methods proposed

in recent years, including, but not limited to, Spectral Hashing (SH) [41], Anchor

Graph Hashing (AGH) [42], Iterative Quantization (ITQ) [35], etc [68, 69, 70, 71].

However, they may not be directly applicable to the neuron retrieval problem, as the

features of 3D neuron morphological data are dramatically different from 2D natural

images, where different neuronal features usually reflect different levels of similarity

measure. For example, the tree-like structure imposes a challenge to differentiate the

neuron types, since treating all features with equal importance may lead to inaccurate

retrieval results. In addition, although supervised binary coding and hashing methods

have already been investigated in medical image analysis [40, 72, 73], it is preferred

to employ unsupervised methods for neuron retrieval, since there are no sufficient

annotations to differentiate and classify all neurons.

Although neuron morphology and binary coding are both well-studied in recent

years, how to combine them for neuron retrieval remains a hard problem. Applying

binary coding in solving the large-scale neuro-morphological retrieval is quite different

in comparison with the large-scale retrieval of natural images. Specifically, there are

three challenges when introducing binary coding in neuron morphological retrieval:
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1. Due to the employment of hand-crafted features (i.e., the quantitative mea-

surements), the feature vectors of each neuron are much shorter (30 to 100 di-

mensions) compared with traditional 2D images’ feature vectors (500 to 10000

or more dimensions). Therefore, only much shorter bits of binary codes can

guarantee the retrieval efficiency. Employing much shorter binary codes for the

representation of large-scale neuron data is a great challenge;

2. For the 38 dimensional hand-crafted features we employed in Chapter 3, despite

the limited length of neuron feature vectors, each type of feature has their spe-

cific meaning, e.g., branch number reflects the connection of neuron cell, bipolar

neurons have two branches while multipolar neuron have three or more branches

connected with other neurons. Currently, most image retrieval methods are ei-

ther addressing the single feature’s binary coding or fuse multiple features in

different retrieval stages [74, 75, 62, 76, 77]. However, in the neuron retrieval

problem, each single feature is too short to obtain reliable retrieval results, and

fusing multiple features is usually time-consuming. Thus, the specific biological

indication and the computational complexity in neuronal feature representation

need to be considered.

3. As each hand-crafted features are extracted based on the tree-like structure,

this limitation of feature extraction may cause a tough question, in which the

tree-like structure will lead to similar features extracted from different types

of neurons, e.g., some unrelated neurons express approximate feature vectors.

How to differentiate these approximate feature vectors in non-linear space is a

hard problem.

This chapter aims to investigate binary coding algorithms that can accurately and

efficiently perform large-scale neuron retrieval, which is a critical step for neuron

identification and analysis. Novel binary coding methods are designed for the mas-
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sive and continuously expanding neuro-morphological datasets. Particularly, to dif-

ferentiate the linearly inseparable neurons in large-scale datasets, we first develop a

binary coding method based on the maximum inner produce search (MIPS). Unlike

prior methods that learn hashing functions to embed Hamming distances or Eu-

clidean distances, our method obtains effective coding functions for maximum inner

product, which has the flexibility to differentiate complex features that are linearly

inseparable in the original feature space. In fact, this strategy is particularly suit-

able for the neuron morphology data, which is usually non-convex and non-smooth.

Moreover, for the continuously expanding neuron datasets, we extend binary coding

with online updating schemes, which only considers the newly added neurons and

update coding functions on-the-fly, without accessing the whole neuron databases.

The proposed methods are validated in the neuron retrieval problem with the largest

neuro-morphological database, and they outperform multiple related binary coding

or hashing methods. In addition, according to the neuron information provided by

NeuroMorpho [1], the proposed methods can retrieve similar neurons in terms of

morphology, cell type and brain region.

4.2 Maximum Inner Product Search for Large-scale Neuron Retrieval

This section presents the theoretical and technical details of MIPS based binary

coding for the large-scale neuron retrieval, including the MIPS notation, feature hi-

erarchy and asymmetric optimization.

4.2.1 Overview

In the framework of MIPS based binary coding, we use morphological measure-

ments as features to represent each neuron data. Although directly measuring the

similarity between morphological features offers an accurate solution, the computa-

tional efficiency is an issue, especially when searching in a large-scale database of tens

of thousands of neurons. Therefore, we focus on learning coding functions to trans-
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Figure 4.1: Overview of the proposed neuron morphological retrieval framework.

form morphological features into binary codes. Fig. 4.1 shows the overview of the

proposed framework. In the training phrase, after feature extraction, we group differ-

ent features into several hierarchies to compute the similarity matrix. Then, binary

coding functions are learnt which can maximize inner product between two training

data sets. Particularly, for optimization convenience, we jointly maximize two asym-

metric coding functions h(·) and z(·) for the neuron database and the query neuron

respectively. With these learnt coding functions, in the query phase, the features of

query neuron and all neurons in the database are compressed into short binary codes.

Then, their inner products can be sequentially calculated and ranked in descending

order. By selecting neurons in the database with top-K largest inner product (indi-

cating top similar neurons among the whole database), the characteristics of query

neuron can be identified based on the retrieved neurons.

4.2.2 Methodology

Background of MIPS: Let’s denote A = {a1, . . . , ai, . . . , an} ⊂ Rn×d as the

training neuron data set, which include n neurons, and each neuron has d dimensional

features. From each neuronM types of morphological features are extracted, denoted

as ai = [a
(1)
i , . . . , a

(j)
i , . . . a

(M)
i ] ∈ R1×d, where d =

∑M
j=1 dj. Assume the query neuron
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is q ∈ R1×d, the MIPS problem can be defined as:

p = argmax
ai∈A

aiq
T (4.1)

which finds the largest inner product between q and each element in A. As demon-

strated in [40], the Hamming distance and the code inner product have a one-to-one

correspondence. To accelerate computation and save storage, it is reasonable to em-

ploy binary coding method in tackling MIPS problem. A coding function h is learned

to map the original feature vectors to bits of binary codes. Thus, problem (4.1) is

reformulated as:

p = argmax
ai∈A

h(ai)h(q)
T (4.2)

Compared with common binary coding methods based on Hamming distance mini-

mization, h is likely to be a non-linear function through MIPS, which is more suitable

for the neuron retrieval database that is linearly inseparable.

In [78], Shrivastava and Li proposed the Asymmetric Locality Sensitive Hashing

(ALSH) method, proving that it is impossible to inherit the high collision probability

guarantee of MIPS problem under current LSH framework. In fact, by adopting two

different binary coding functions h(·) and z(·) to compute the inner product of the

database and query, the MIPS can be converted as the standard L2 nearest neighbor

search problem [78, 69]. Accordingly, to generate more effective binary codes, we also

adopt two coding functions for the MIPS problem:

p = argmax
ai∈A

h(ai)z(q)
T (4.3)

The remaining issue is how to learn two coding functions h(·) and z(·), which can

generate effective binary codes to make query neurons finding their corresponding
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similar neurons in database.

Binary Coding for Neuron Retrieval: For the training neuron data set A,

we assemble another neuron set X ⊂ Rm×d which is randomly sampled from the

database. Denoting matrix S ∈ Rn×m which reflects the similarity of each neuron

between A and X, the idea of MIPS based binary coding is to learn coding functions

which can make the inner product of A and X to approximate with S in the form of

binary codes:

min
h,z

∥∥∥h(A)z(X)T − Ŝ
∥∥∥2 (4.4)

where Ŝ is the binarization form of S by its mean value. Instead of directly solving

this challenging problem, we discard its quadratic part after expansion and only focus

on the correlation between similarity matrix Ŝ and h(A)z(X)T. Since the discarded

quadratic part is the regularization term, which does not include any ground truth

information. Thereby, eq. (4.4) can be re-defined as:

max
h,z

trace(h(A)TŜz(X)) (4.5)

In practice, we find that omitting the quadratic part does not affect the binary coding

performance. It also makes the problem easier to optimize, because the similarity term

is more efficient to solve for the non-linear differentiation of neuron morphologies.

Subsequently, we define two binary coding matrices W, R ∈ Rd×r to substitute

the coding functions, where h(A) = sgn(AW), z(X) = sgn(XR), and r is the bits

of binary codes for each neuron. Generally, W and R are initialized by Principal

Component Analysis (PCA) projections or random generation. Then, we obtain eq.

(4.5) in a new form:

max
W,R

trace(sgn(AW)TŜsgn(XR)) (4.6)
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In this objective function, we need to optimize W and R from the training neuronal

sets A, X and their similarity matrix S. Generally, S is computed by inner product,

S = AXT. However, in this work, the extracted features especially the hand-crafted

features captured through the quantitative measurements usually express different

similarity levels in the representation of neuron cells. Simply aligning these features

together to compute similarity matrix may generate ineffective binary codes. There-

fore, we first consider feature diversities to compute more suitable similarity matrix,

then optimize W and R for the eq. (4.6).

Feature Hierarchy: For the single type of neuron feature, i.e., jth feature, its

similarity matrix can be obtained by the corresponding inner product of A(j) and

X(j):

S(j) = A(j)(X(j))T (4.7)

Many articles [75, 79] treat the above S(j) as feature kernels and fuse multiple kernels

together with different weights to compute the similarity matrix:

S =
M∑
j=1

µjS
(j) (4.8)

where µj is the similarity weight of jth feature. In most case, there are either few

types of features or few numbers of training data, which make the computational

complexity of S acceptable. However, in large-scale neuron retrieval, many features’

similarity matrices need to be calculated (38 features in this paper), and usually

thousands of neurons in database should be set as the training data to ensure the

retrieval precision. The computational complexity of the similarity matrix is an issue

in neuron retrieval.

Since neuronal features are extracted from the tree-like structure, neuron retrieval

can also benefit by being treated as the similarity search of the tree-like structures.
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Despite the fact that each type of feature has its specific meaning, they can be grouped

into hierarchies according to their different levels of representation. The similarity

levels can also be computed hierarchically, from the measures of soma (tree’s root)

and branches (tree’s vertices and edges) at the global level (i.e., height, width of the

whole neuron cell), features measured in the branches directly connect with soma at

first level branches, etc. Assuming there are L hierarchies for all types of features,

the similarity matrix can be re-calculated as:

S =
L∑
l=1

ωl[A
(l)(Z(l))

T
] (4.9)

where A(l) = [A(j1), . . . , A(jl)] means that features j1, . . . , jl are grouped together

and they all belong to the lth hierarchy. Consequently, the computation efficiency

will have great improvement via the feature hierarchy process (L � M). More

importantly, each hierarchical weight ωl is much easier to acquire compared with

each feature’s weight µj. In practice, we group the 38 quantitative measurements

(i.e., hand-crafted features) into three hierarchies based on their measured locations

in the neurons’ tree-topological structure. Hierarchical weights are determined by the

neuronal tree-like structure, and will be discussed in the experiment part. Here, we

provide the group details of the quantitative measurements, including the statistic

metric adopted in the L-measure toolbox [25]:

1. Global Level: Length (sum), Height (sum), Width (sum), Depth (sum), Volume

(sum), N_tips (sum), Nbifs (sum), Surface (sum), N_branch (sum), Diameter

(sum), Soma_Surface (sum), N_stems (sum), Contraction (sum), Fragmenta-

tion (sum), Pk_classic (sum);

2. Branch Level: Euc_Distance (sum), Helix (average and max), Fractal_Dim

(average and max), Branch_order (max), Branch_path_length (average and

max), Path_Distance (sum),;
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3. Bifurcation: Bif_ampl_local (average and max), Bif_ampl_remote (average

and max), Bif_tilt_local (average and max), Bif_tilt_remote (average and

max), Bif_torque_local (average and max), Bif_torque_remote (average and

max), Terminal_degree (average), Partition_asymmetry (average).

Asymmetric Optimization: After compute the similarity matrix, we design an

asymmetric strategy to solve the highly non-convex optimization problem of eq. (4.6).

As both W and R are constrained by the sign function, it is hard to simultaneously

optimize them together. Instead, we first assume that the right part of eq. (4.6)

is fixed as a constant matrix Z = sgn(XR), and then we consider the following

sub-problem with variable W:

max
W

trace(sgn(AW)TŜZ) (4.10)

In the same way, fix the left part H = sgn(AW), we can obtain the sub-problem with

variable R:

max
R

trace(HTŜsgn(XR)) (4.11)

Compared with eq. (4.6), only one sign function and coding matrix are included in

each sub-problem. Based on this asymmetric design, if we can solve the two sub-

problems, then optimal W and R for the whole problem can also be obtained by

several alternative iterations between (4.10) and (4.11).

For the sub-problem (4.10), despite that only one sign function remains, it is still

a discrete optimization issue. To solve this, we introduce an auxiliary variable B ∈

{−1, 1}n×r as the binary codes of A to replace the discrete part sgn(AW), and the

sub-problem (4.10) can be separated into two terms:

max
B,W

trace
[
(BTŜZ)− λ‖B−AW‖2

]
(4.12)



37

The first term maximizes inner product via the learned binary codes, and the second

term ensures that AW can approximate with the target binary codes B. Denoting λ

as a trade-off parameter between these two terms. Subsequently, W can be optimized

by several alternative iterations with B:

 B = sgn(ŜZ+ 2λAW)

W = A†B
(4.13)

where A† is the pseudo-inverse of A. Optimal W of this sub-problem will be acquired

until coverage or reach maximum t iterations.

After solving the (4.10), denoting D ∈ {−1, 1}m×r as the auxiliary variable for

sgn(XR), then optimal R for sub-problem (4.11) can also be acquired in the same

way:

 D = sgn(ŜTH+ 2λXR)

R = X†D
(4.14)

As these W and R are the local optimal results of two sub-problems, we denote

such alternative iterations between coding matrices and auxiliary variables as the

inner loop. To obtain the optimal coding matrices for the objective function (4.6),

several outer alterative iterations between (4.10) and (4.11) are still needed until

coverage or reach maximum iterations.

During the optimization, each variable is obtained in a closed form (e.g., W, R,

B, D), to effectively learn the coding functions even with short binary codes. In

addition, the MIPS based objective functions and asymmetric optimization provide

a convergent solution to differentiate neuron morphologies in non-linear space.

4.2.3 Implementation Details

Given the training data A and X, our MIPS based binary coding for neuron mor-
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Algorithm 1 Binary Coding Based on Maximum Inner Product Search.
Require: Training data A and X;
Ensure: Binary coding matrices W and R
1: Extract M types of morphological features for each neuron in the training data;
2: Group features into L hierarchies;
3: Compute the similarity matrix through eq. (4.9);
4: Initialize binary coding matrix W and R by PCA projections;
5: while unconverged or less than the maximum T iterations do
6: Solving sub-problem (4.10): compute W by the inner loop of (4.13), where

Z = sgn(XR);
7: Solving sub-problem (4.11): compute R by the inner loop of (4.14), where

H = sgn(AW);
8: end while

phological retrieval can be outlined in Algorithm 1. With acquired coding matrix W,

the morphological features of every neuron in the database ai ∈ R1×d can be mapped

to binary codes via the coding function h(ai) = sgn(aiW). In the same way, with

coding matrix R, the binary code of query neuron is calculated by z(q) = sgn(qR).

Then, the similarity search problem between query neuron and the neuron database

is transformed as the inner product ranking of their binary codes. For the query neu-

ron, the similar neurons are defined as the neurons with top-K largest inner product,

and these similar neurons can further be used to interpret biomedical meanings of

the query neuron.

4.3 Online Binary Coding for Continuously Expanding Databases

Although binary coding and hashing methods have been widely investigated for

large-scale image analysis [27, 72], how to efficiently tackle the frequently updated

databases is still an unresolved problem. This is particularly important for neuron

analysis, since an increasing number of neuron cells are reconstructed and added to

the morphological database in a streaming manner, benefited from the well-designed

neuron tracing software [2, 64]. For example, the NeuroMorpho database [1] is contin-

uous increasing, and usually releases 5, 000 to 10, 000 reconstructed neurons in each

update. If we re-train binary coding models every time from scratch, using both
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Figure 4.2: Overview of the proposed binary coding with online updating framework
for the large-scale neuron retrieval.

the original and the newly added neuron data, it will be very time-consuming and

adversely affects the efficiency of exploration.

To alleviate these problems, we design an online binary coding framework, which

can achieve accurate and efficient morphological retrieval by accommodating the con-

tinuously updated neuron databases on-the-fly.

4.3.1 Overview

Fig. 4.2 shows our framework for the exploration of continuously updated neuron

databases. Firstly, effective features are needed to represent each neuron. As the 3D

neuron data is dramatically different from 2D natural images, we select several mor-

phological quantitative measurements as features based on their tree-like structures,

e.g., neuron’s total height, number of branches and soma surface [24]. Then, we ap-

ply the matrix sketching method on the extracted features from the existing neuron

database, generating the data sketch and virtual sample as initial values for the on-

line updating afterwards. Given a new neuron batch during the updating phase, we

combine it with the aforementioned virtual sample together. This combination can

overcome the mean-varying problem in matrix sketching with continuously updated

neuron data. The sketching result can be subsequently used for binary coding to

update the current coding function. The new data sketch and virtual sample are also
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stored for the next update. During the query phase, the features of query neuron

and all neurons in current database are compressed into short binary codes based on

updated coding functions. The neuron retrieval problem is transformed into the ham-

ming distance ranking between binary codes of query neuron and the other neurons.

Specifically, the retrieved similar neurons are these with top-K minimum hamming

distances, and they can be used to explore the biomedical meanings of the query

neuron.

4.3.2 Binary Coding with Matrix Sketching

The goal of binary coding is to compress feature vectors into short binary codes, and

also keep diversities and similarities among original data. Denoting a training neu-

ron database X = {x1, . . . ,xi, . . . ,xn} ⊂ Rn×d, which includes n neurons, and each

neuron has d dimension of features. We aim to learn a coding function W ∈ Rd×r

that every normalized neuron feature in X can be transformed into r bits of binary

codes, i.e., h(xi) = sgn((xi − X)W), where X is the mean value of X. Note that

feature normalization with zero mean is a crucial step in binary coding, especially

for neuron data, because each dimension has its physical meaning. To learn effec-

tive binary codes, usually two requirements should be satisfied: (1) binary bits are

uncorrelated and their variances are maximal; (2) numbers of 0 and 1 are roughly

equal in the learned binary codes of X. Same as [80], the requirements are satisfied

by maximizing the following objective function:

J(W) =
1

n
trace(WT (X−X)T (X−X)W), s.t.WTW = Ir×r (4.15)

Instead of directly optimizing the above objective function, we apply the matrix

sketching technique on the training database to learn coding function from data

sketch. Sketching is a data compression technique which can significantly reduce the

data size, without losing much information. Specifically, for the neuron database
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X, we denote its matrix sketch as Y ∈ Rl×d, which has the property YTY ≈

(X−X)T (X −X). We employ the Frequent-directions (FD) algorithm [81] to com-

pute Y, as this algorithm can effectively keep the property of matrix sketch. More

importantly, FD is a streaming algorithm which can sequentially process the training

data. In other words, when a new data batch comes, FD algorithm will update the

current sketch. We show the advantage of such streaming strategy for the online

updated neuron data in next subsection.

Given the data matrix X, FD algorithm can obtain its sketch Y with much smaller

data size (l � n). Then, the objective function of binary coding can be re-written

as:

J(W) ≈ 1

n
trace(WTYTYW) (4.16)

This objective function is exactly the same as that of Principle Component Anal-

ysis (PCA). The optimal coding function W can be obtained by taking the top r

eigenvectors of the data covariance matrix YTY [35]. In addition, to alleviate the

unbalance of different dimensions in neuron data, we adopt orthogonal rotation for

the above acquired coding function, where W = WR. However, since the sketch Y

is much smaller than the whole training data X, we cannot learn the optimized R as

ITQ [35], which relies on all training data. Instead, we generate a random orthogonal

matrix as R, which achieves promising accuracy and efficiency in our experiments.

4.3.3 Online Coding Function Updating

When new neuron batches are added to the database, we need to update the

coding function accordingly to guarantee the retrieval precision. Re-training coding

function from scratch is very time-consuming, and sometimes infeasible when the

existing neuron database is too large to load into the memory. Considering that the

FD algorithm can compute data sketch in a streaming manner, an intuitive solution
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is to set the previous database sketch as the initial value, and then employ the FD

algorithm to sketch the newly added data. The coding function can be also updated

with the new sketch. Unfortunately, this attempt is impractical because of the feature

normalization requirement in binary coding. As the neuron database are continuously

changing, its mean value for normalization is also changed. How to overcome this

mean-varying problem is a critical step in online coding function updating.

Assume Bk is the newly added batch at round k which include mk neurons, and

the current database is denoted as Xk = {B0,B1, . . . ,Bk}. Then, the mean value of

Xk can be computed as:

Xk =
Xk−1 · nk−1 +Bk ·mk

nk

(4.17)

where Bk is the mean value of Bk and nk =
∑k

i=0mi. Obviously, the mean value

of neuron database is changed in each update. To solve this problem, we introduce

a virtual sample, which considers the difference of mean value between the previous

database and the current batch [82]. Then we combine it with the current batch:

B̂k = [Bk −Bk,

√
nk−1mk

nk

(Bk −Xk−1)] (4.18)

At round k, we have a new set of data X̂k = {B0 − B0, B̂1, . . . , B̂k}. According

to [82], in each update, X̂k takes the shift of mean into account and corrects such

shift by the virtual sample. More importantly, combining with Eq. (4.17), we find

that X̂T
k X̂k = (Xk −Xk)

T (Xk−Xk). This property indicates that data sketch of X̂k

and Xk − Xk is the same. Since X̂k has no mean-varying problem, we can employ

the aforementioned FD algorithm to sketch the continuously updated neuron data

B̂k, and the coding function can be also updated on-the-fly via the matrix sketching

based binary coding.

Algorithm 2 summarizes the workflow of our online binary coding for neuron re-
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Algorithm 2 Binary Coding with Online Updating for Neuron Retrieval.
Require: Original neuron database B0, streaming neuron batches {B1,B2, . . . ,Bk}.
Ensure: Online updated coding functions {W1,W2, . . . ,Wk}.
1: Sketch B0 −B0 into Y0;
2: Initialize n0 = m0, X0 = B0;
3: for i = 1→ k do
4: Sketch B̂i = [Bi −Bi,

√
ni−1mi

ni
(Bi −Xi−1)] into Yi, initialize by Yi−1;

5: Update coding function Wi: argmax
Wi

1
mi+1

trace(Wi
TYi

TYiWi);

6: Update data size: ni = ni−1 +mi;
7: Update mean value: Xi =

Xi−1·ni−1+Bi·mi

ni
;

8: end for

trieval. Starting from the initial data sketch and the mean value, it can continuously

update the coding function when new neuron batch comes. Without accessing the

entire neuron database, we only keep the data sketch Yi, data size ni and mean value

Xi in each update. Therefore, the coding function can be efficiently updated and

applied to this neuron retrieval problem.

4.4 Experiment

This section validates the effectiveness of our introduced two binary coding meth-

ods, i.e., MIPS based binary coding and online binary coding, which can efficiently

and accurately achieve the morphological retrieval in large-scale neuron databases.

4.4.1 Experimental Setting

Our experiments are carried out on the NeuroMorpho [1], which has the largest

collection of publicly accessible 3D reconstructed neuron data. Specifically, we use the

entire 17,107 Drosophila Melanogaster neurons to evaluate the retrieval performance.

Following the convention, we employ L-measure toolbox to extract 38 quantitative

measurements as morphological features for each neuron [25], including 15 global, 10

branch and 13 bifurcation features respectively. In this chapter, all experiments are

conducted on a 3.6GHz CPU with 4 cores and 32G RAM, in a MATLAB implemen-

tation.
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We evaluate the performance by computing the retrieval precision, which is defined

as:

Precision =
|{uPNs} ∩ {Retrieved Neurons}|

|{Retrieved Neurons}| (4.19)

where |·| denote to count the number of samples inside. In the experiments, we

compute the average precisions obtained over all queries.

4.4.2 Evaluation of MIPS based Binary Coding

To evaluate the efficacy of MIPS based Binary Coding for neuron morphological

retrieval problem, we compare the retrieval performance in multiple protocols with

three state-of-the-art unsupervised binary coding and hashing methods:

1. SH [41]: Spectral hashing is a well-known algorithm which harness nonlinear

manifold structure to produce neighborhood-preserving compact binary codes;

2. ITQ [35]: Iterative quantization is based on PCA projection for dimensionality

reduction and minimizes quantization error via orthogonal transformation. It is

a very effective binary coding method for most natural image retrieval problem;

3. AGH [42]: Anchor graph hashing discovers the neighborhood structure inherent

in the data to learn appropriate compact codes, which has already shown its

excellent performance in mammogram retrieval [83].

As mentioned in Section 4.2, we calculate the measurements in three levels, i.e.,

global, branch and bifurcation. In practice, for computational convenience, we also

group features in such three hierarchies. The similarity weights of each hierarchy

are empirically obtained by the tree-like structures and neuronal properties. Due to

the linear inseparability of neuronal structure, unrelated neurons are likely to express

similarities in the global viewpoint. On the other hand, neurons with some common
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Table 4.1: Comparison of retrieval precision with 16, 24, 32 bits of binary codes under
different number of retrieved neurons.

Method top10 top20 top50
16-bit 24-bit 32-bit 16-bit 24-bit 32-bit 16-bit 24-bit 32-bit

SH ([41]) 0.8046 0.8116 0.8115 0.7211 0.7221 0.7264 0.5043 0.5102 0.5192
ITQ ([35]) 0.8278 0.8298 0.8381 0.7595 0.7599 0.7615 0.6338 0.6394 0.6483
AGH ([42]) 0.8254 0.8329 0.8353 0.7603 0.7861 0.7980 0.6325 0.6423 0.6874
Ours 0.8889 0.8810 0.8909 0.8428 0.8378 0.8438 0.7436 0.7440 0.7451

properties (e.g., cell types, brain regions) tend to express similarities in branch struc-

ture but different in bifurcation if they are not exactly the same. Therefore, we set

global hierarchy with low weight to reduce the influence of non-linear structure. Then,

we assign highest weight for branch hierarchy and next-highest weight for bifurcation

hierarchy to make sure that we can retrieve neurons with common properties and

also differentiate them in subtle level. In the experiment, we set global, branch and

bifurcation hierarchies with the weights ratio of 1:14:5, which can achieve promising

performance for neuron retrieval. In the learning of coding functions, training data

setsA andX are random sampled, covering 80% of the whole Drosophia Melanogaster

neurons database. For the MIPS based binary coding, maximum iterations of the in-

ner loop and outer loop are 100 and 10 respectively. The trade-off parameter λ is set

as 34. The length of binary codes for each neuron is scalable in our method, which

is determined by the size of coding matrices W and R. Generally, W and R are

initialized by PCA projections. They can also be initialized by random generation if

we want to obtain binary codes which are longer than the feature vectors.

As neuron morphology is correlated with their cell types and brain regions, for the

Drosophia Melanogaster neuron database which has various cell types (around 100)

and brain regions (around 50), we select 233 projection neurons (PN) in olfactory

bulb and 19 lateral horn neurons (LH) in protocerebrum as queries, which is consist

with previous works in evaluating neuron retrieval performance [8, 84]. In the testing

phrase, the correctly retrieved neurons are defined as if they have the same cell types

and brain regions with the query neuron.
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(a) (b)

Figure 4.3: Retrieval performance of four compared methods, 32 bits of binary codes
are used: (a) precision curve; (b) precision-recall curve.

For all the PN and LH queries (252 in total), Fig. 4.3(a) shows their average

retrieval precision of four competitive methods under different number of retrieved

neurons. Here, we denote retrieval precision as the percentage of correct neurons in

all the retrieved neurons. Every method generates 32 bits of binary codes to represent

each neuron. According to Fig. 4.3(a) we can see that our method significantly out-

performs all other advanced binary coding methods in terms of retrieval precision. It

mostly benefits from the feature hierarchy processing and MIPS based binary coding.

As we group features into different hierarchies, in which each hierarchy reflect their

corresponding levels of neuron representative, more suitable similarity matrices are

obtained for the continued binary coding. Additionally, the employed MIPS baseline

is more likely to generate effective binary codes for the linearly inseparable neuron

data, since the inner product embedded objective function are more likely to map

coding matrices into non-linear space, and the asymmetric optimization strategy pro-

vides a convergent solution. Fig. 4.3(b) provides the precision-recall curves for the

above four methods. We can easily observe that the performance of the compared

methods is consistent with the above analysis. Our method still performs the best

among all compared methods.

We also report the retrieval precision of the compared methods using 16, 24 and

32 bits of binary codes respectively. As SH [41] and ITQ [35] can only generate
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Figure 4.4: For each neuron on the left (red), top-5 retrieved neurons on the right
(blue) through our method, which illustrate the morphological similarity between
query neurons and retrieved neurons.

Table 4.2: Comparison of neuron retrieval precision and efficiency (in second) before
and after MIPS based binary coding, using the feature fusion results.

Precision Time(s)

Fused-fea 0.9083 73.76

MIPS 0.8876 0.15

binary codes shorter than feature vectors (38 dimensions in this paper), we only

compare the precision of the four methods with bits which are less than 38. From

Table. 4.1, we find that our method can always achieve the highest precision under

different bits of binary codes. These results verify the proposed method can generate

more effective and representative binary codes for data residing embedded in the non-

linear structure. In addition, from 16 bits to 32 bits, the retrieval precisions of our

method are approximately equivalent, which demonstrate that asymmetric design for

MIPS based binary coding can help us obtain convergent results in several alternative

iterations.

Beside the retrieval precision, we evaluate the computational efficiency in the test-

ing phase. In this part, we employ the whole NeuroMorpho database [1] which in-

cludes 58, 414 valid neurons. All these neurons are first represented using the about
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78 dimensional fused features from SCAEs and L-measure toolbox. Then each neu-

ron features are compressed into 32 bits of binary codes using the MIPS based binary

coding. Table. 4.2 compares the retrieval precision and efficiency before and after the

MIPS based binary coding, using the feature fusion results. For the 78 dimensional

fused features, the learned coding functions compress them into 32 bits of binary

codes. In this experiment, we also employ the 233 uPNs as queries and record their

top-10 average precision. According to Table. 4.2, the retrieval precision after binary

coding hasn’t lose too much (i.e., only 2% lower compared with the feature fusion

results). However, after compressing the fused features into binary codes, the 233

uPNs can achieve real-time retrieval in the whole NeuroMorpho database, i.e., se-

quentially indexing 58, 414 neurons with only 0.15 seconds in total. Compared with

the exhaustive searching using the fused features, the efficiency of neuron retrieval has

a significant improvement through binary coding (i.e., around 500 times faster). This

superiority will be especially benefited in the future neuron retrieval tasks since an

increasing number of neurons are reconstructed and added to large-scale databases [3].

Additionally, Fig. 4.4 presents four random selected query neurons and their cor-

responding top-5 retrieved neurons through our method. We employ Vaa3D [2] to

display these neurons. Generally, the retrieved neurons present similar morphologies

with their query neurons, which verify the effectiveness of feature extraction proce-

dure and the proposed MIPS based binary coding method.

4.4.3 Evaluation of Online Binary Coding

In this experiment, we aim to demonstrate that the binary coding part can attain

promising performance with the continuously expanding neuron database. We ran-

domly split the 17,107 Drosophila Melanogaster neurons into two parts. The first

1,107 neurons are used as the original database, and the remaining 16, 000 neurons

are equally divided into 100 batches (160 neurons in each), which are sequentially

added to simulate the expanding size of the neuron database. Our online binary
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Table 4.3: Training time comparison (in second) under 100 rounds of update.

Rounds 20 60 100

Batch-based 1.12 13.24 51.11

Ours 0.26 0.84 1.88

coding method is compared with the batch-based method. The batch-based method

corresponds to the first part in Section 4.3.2, i.e., matrix sketching based binary

coding. For each update, it needs to learn the coding function from scratch, using

all neurons in the database. To overcome randomness, we repeat the experiments a

hundred times to report the average. In the binary coding with online updating, due

to the requirement of the FD algorithm [85], the sketched data size l should be no

larger than the feature dimension d (d = 38 as discussed above). Since the feature

dimension of neuron data is not high, we set l = 38 to preserve the information from

the original database as much as possible.

Table 4.3 presents the accumulated training time of our method and batch-based

method at the 20th, 60th and 100th update rounds respectively. Compared with the

batch-based method, our binary coding with online updating shows great superiority

in computational efficiency, and the superiority becomes more obvious with more

rounds of updates, e.g., 51.11s versus 1.88s for one hundred updates. When new

neuron batches are added to the database, our method only need to consider those

newly added neurons and update the coding function on-the-fly, while the batch-based

method needs to take all the neurons into account to re-train the coding function.

The merit of this online binary coding method is particularly beneficial in the future,

since an increasing number of neurons are reconstructed and added to the databases

through the recently well-developed neuron tracing techniques.

Besides the superiority in computational efficiency, our binary coding with on-

line updating also demonstrates its comparable performance in retrieval precision.

Fig. 4.5(a) shows the average retrieval precision of two competitive methods, taking
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(a) (b)

Figure 4.5: Evaluation of the retrieval precision in 100 rounds of update: (a) Com-
parison of our method with the batch-based method; (b) Comparison of our method
using different bits of binary codes.

their top-10 retrieved neurons into accounts. The learned coding functions compact

the feature vectors into 32 bits of binary codes in this experiment. According to

Fig. 4.5(a), our online method is able to achieve similar retrieval precision as the

batch-based method. Therefore, the binary coding with online updating can signifi-

cantly improve the computational efficiency without sacrificing the retrieval precision.

This is mostly improved by: 1) the employed FD algorithm, which can compute the

data sketch in a streaming manner; and 2) the newly introduced batch of data with

virtual samples, which can overcome the mean-varying problem in a continuously ex-

panding neuron database. Regarding the parameter, Fig. 4.5(b) shows the retrieval

precision of our method when using 16, 24 and 32 bits of binary codes in each up-

date. The online method can always achieve good performance using different bits

of binary codes. These results verify that the online updated coding function can

generate effective and representative binary codes for neuron morphological features.

4.5 Summary

In this chapter, we present two morphological retrieval frameworks for large-scale

neuron exploration and mining. Specifically, we first introduce the feature hierarchy
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strategy to consider feature diversities with low computational complexity. We pro-

vide a novel binary coding method based on maximum inner product search, which

can not only achieves fast neuron retrieval, but also differentiates the linearly insep-

arable morphological space with high precision. Then, we introduce an online binary

coding strategy in tackling the continuously expanding neuron databases, which can

updating the coding function on-the-fly without accessing the whole neuron database.

Experimental results verify the efficacy of our neuron morphological retrieval method

in tackling large-scale neuron databases. In the future, we will study how to learn ef-

fective coding functions under multi-modal features, which can embed different kinds

of features in a generalized binary coding framework. Additionally, we will develop

deep hashing method to integrate neuron feature representation and binary coding

together, using latest deep learning techniques to directly compute binary codes from

3D neuron data end-to-end.



CHAPTER 5: INTERACTIVE EXPLORATION AND VISUALIZATION

5.1 Motivation

The above feature representation and binary coding methods can effectively tackle

the neuron mining in large-scale databases. Despite the excellent performance of the

above methods achieved, there are mainly two limitations that can influence the min-

ing results of neuronal databases. Firstly, current neuron databases lack supervised

information, i.e., no sufficient annotations to label the class of every neuron [86, 14].

Generally, supervised retrieval and mining are more accurate in comparison with un-

supervised methods, since it can bridge the gap between low-level image descriptors

and high-level semantic meaning. In the neuron retrieval problem, if we only con-

sider the low-level neuronal morphologies, the retrieval results may not be consistent

with their functions and properties. Secondly, binary coding can only provide coarse

retrieval results for neuron morphological data [87, 88, 89]. As each neuron cell has a

tree-topological structure, the difference among neuron morphologies can be subtle.

Moreover, coding functions do not have one-to-one correspondences when mapping

morphological features into binary codes. This may present a difficult question, in

which some unrelated neurons are represented by the same binary codes. The above

two problems should be addressed to achieve good retrieval performance in the neuron

morphological data.

In order to improve retrieval performance and reduce the semantic gap, some image

retrieval systems introduce domain experts/users in the loop, which can interactively

provide relevance feedback for the previous retrieval results [50, 52, 54, 53]. However,

for untrained users, it is hard to differentiate the complicated tree-topological struc-

tures in neuron morphologies, particularly with the current visualization tool-kits
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which the neurons are visualized in 2D static interface. The limitation of neuronal

visualization performance may results in inaccurate relevance feedbacks, and thus it

may inversely influence the mining results of the whole system.

To alleviate these problems, we first design an interactive exploration method to

bring users in the loop. Particularly, based on the retrieval results from feature rep-

resentation and binary coding, we introduce domain experts/users in our framework,

which can give relevance feedback to improve the retrieval accuracy. In our feedback

model, domain experts/users are only required to label the relevant samples with

respect to query neurons from top-z results. Then, the similarity levels of the un-

labeled neurons will be re-ranked accordingly through our newly designed similarity

measure. Moreover, to help users take a deep understanding of neuron morphologies,

we develop a novel neuron visualization program through the Microsoft HoloLens

augmented reality (AR) headset. To the best of our knowledge, this is the first work

that applied user interaction and augmented reality techniques for the analytics of

3D neuron data.

5.2 Interactive Neuron Exploration

According to the above binary coding method, we can compress the query neu-

ron and all neurons in the current database into short binary codes, through the

learnt coding functions. Then the similar neurons can be retrieved based on their

Hamming distance ranking or maximum inner product with the query neuron. As

discussed in Section 4.1, binary coding can only provide coarse retrieval results for

the neuron morphological data. Therefore, given the coarsely retrieved neurons (e.g.,

neurons with top-Z minimum Hamming distance), we propose to introduce domain

experts/users in the framework, which can interactively provide relevance feedback

to refine the retrieval results.

Receiving Feedbacks from Users: Fig. 5.1 presents an illustration of our user

interaction interface. For a query neuron, it first searches similar neurons based
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Figure 5.1: An illustration of our user interaction interface, users will give feedback
by one-click inputs.

on the aforementioned binary coding method. Then we display the top-z (z=16

in Fig. 5.1) retrieved neurons to users, and users will compare and observe these

neurons to decide whether they are relevant to the query neuron. This feedback

scheme is easily implemented since it requires users to give only one-click inputs.

Unlike many interactive models which require users to specify the class of the retrieval

results [53, 90, 91], our strategy is particularly suitable for neuron databases which

have insufficient annotations to classify every neuron.

Improving Retrieval Performance Using Feedbacks: After receiving the

interactive feedback from users, our framework is able to process this feedback to

improve the retrieval performance. Benefiting from the binary coding step which can

efficiently provide the coarse retrieval results, we first define the outer scope size Z,

where most similar neurons are included in the top-Z coarse results. Subsequently, we

define the inner scope size z, which represents the number of neurons that should be
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presented to the users at each feedback round. In practice, Z is larger than z but much

smaller than the size of the whole neuron database. During the interactive neuron

retrieval phase, we focus on re-ranking these Z coarse neurons to obtain fine-grained

results.

Assuming in the t-th round of relevance feedback, V(t) is the set of labeled similar

samples from users which include m(t) neurons. As neurons in V(t) are all similar

with the query neuron, we can assemble them together to interpret and re-rank the

similarities for the rest of the unlabeled neurons. Denoting E(xi,xj) as the similarity

measure between two neurons xi and xj, for one unlabeled neuron in tth round of

relevance feedback x
(t)
i , we re-define its similarity with the query neuron as follows:

E
(t)
i = λE(x

(t)
i ,xq) + (1− λ) 1

m(t)

m(t)∑
j=1

E(x
(t)
i ,x

(t)
j ) (5.1)

where xq is the query neuron and x
(t)
j is the neuron in V(t). The above objective

function indicates that if an unlabeled neuron has similarity with the query neuron,

it should be similar with the labeled neurons as well to some extent under the trade-off

parameter λ.

According to Eq. 5.1, how to compute the similarity measure is a critical issue for

re-ranking the unlabeled neurons. In most scenarios of image retrieval, the similar-

ity measure between two images is defined as the Euclidean distance of their feature

vectors. However, this similarity measure cannot be directly applied for the neuron

morphological data, since each dimension of neuron features are distinct quantitative

measurements which have different levels of representation. As discussed in previous

sections, we compute three levels of measurements as features based on the neu-

ron’s tree-topological structure, i.e., global, branch and bifurcation. Accordingly, we

propose to group features into these three levels and assign them with different repre-

sentative weights (i.e., ωgl, ωbr, ωbi) to compute a more accurate similarity measure.
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For the two neurons xi and xj, their new similarity measure can be formulated as:

E(xi,xj) = ωglDgl(xi,xj) + ωbrDbr(xi,xj) + ωbiDbi(xi,xj) (5.2)

where Dgl, Dbr, Dbi denotes the normalized Euclidean distance of global, branch and

bifurcation features respectively. This similarity measure is specifically designed for

neuron morphological data. Finally, with the newly defined similarity measure, we

re-rank all the unlabeled neurons in ascending order based on their results in Eq. 5.1,

and present the updated top-z results to users. Users can iteratively give relevance

feedback for these z neurons until they satisfy with the retrieval results.

5.3 Neuronal Visualization

The above interactive strategy can receive relevance feedbacks from users and sub-

sequently improve the retrieval performance based on the relevance feedbacks. There-

fore, one important problem is how to visualize and present these retrieved results to

users. Moreover, neuroscientists require more comprehensive visualization software to

help them explore and analyze the neuron morphology. To this end, we develop a novel

neuron visualization program in assisting neuron exploration through the Microsoft

HoloLens augmented reality (AR) headset. Here, we introduce the implementation

details of the AR based neuron visualization program.

Our visualization program is developed using the Vuforia AR platform and the

Unity game engine, which can create a powerful tool for the application development

on Microsoft’s Windows Holographic Platform. Particularly, when visualizing the

neurons, we start by mapping the data points for each neuron to the real world.

Based on the spatial anchors (i.e., data structures containing a world coordinate and

information about the surrounding environment), anchor points are first created in

the virtual environment that the HoloLens has generated in the correspondence with

the real world. Each anchor point has their own coordinate systems in which the
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data points are rendered. To compete for the visualization, the Unity’s built-in line

renderer are employed to create lines connecting each data point to their parent data

point, according to the SWC data format provided in neuron databases. The package

use the Bézier curve in connecting these lines, which is a type of parametric curve that

can be scaled indefinitely. Once the neurons are mapped in the virtual environment,

the Hololens uses stereo images to visualize the neurons on the transparent screens

of the headset, so that they appear as if they existed in the real world in front of

the user. As the anchor points correspond to the real world, the visualizations will

appear to be fixed to a given location before the user unless moved. In addition, the

neuron visualizations are rendered with depth-based coloring, which adjusts based on

the user’s proximity to the neuron.

We also make the visualized neurons interactable. We place a transparent transform

at the center of each neuron, which also acts as the parent for all the data points of

an individual neuron. Upon placing the visually directed cursor of the HoloLens on

the center of the neuron, the cursor gives a visual cue, which indicates that an object

is interactable. As the transform is transparent, this gives the impression that the

neuron itself is the object you are interacting with.

5.4 Experiment

In this experiment, we first evaluate the effectiveness of our proposed interactive

neuron exploration method. Then we provide the visualization results using the

Microsoft HoloLens Headsets.

5.4.1 Evaluation of Interactive Neuron Retrieval

In this part, we aim to validate that the interactive strategy can actually achieve

good performance for the neuron retrieval problem. We will re-fine the coarse retrieved

neurons from previous binary coding results, where the neurons are retrieved from

the entire 17, 107 Drosophila Melanogaster neuron database using 32 bits of binary
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Table 5.1: Retrieval precision of four methods under different number of retrieved
neurons.

top20 top30 top40 top50

ITQ [35] 0.7673 0.7249 0.6948 0.6614

AGH [42] 0.7589 0.7216 0.6951 0.6735

MIPS [84] 0.7923 0.7508 0.7088 0.6828

Ours 0.9015 0.8550 0.7888 0.7092

codes compressed from the 38 dimensional L-measure features [25]. Particularly, we

only consider to refining neurons within top-Z minimum Hamming distance (neurons

in outer scope size). For the user interaction, users will give feedback for the top-z

unlabeled neurons (neurons in inner scope size).

To evaluate the performance of interactive neuron retrieval, at each feedback round,

the top-z unlabeled neurons will be automatically labeled using the ground truth in

order to simulate the user’s feedback. Since our interactive method only requires

users to give one-click inputs(relevant or non-relevant), the ground truth can be easily

achieved by checking whether the unlabeled neurons are uPNs or not.

We compare our neuron retrieval method with three state-of-the-art methods, i.e.,

ITQ [35], AGH [42] and MIPS [84], which are all proposed to tackle the retrieval

problem for large-scale databases. ITQ [35] is a very effective binary coding method

for most natural image retrieval problems. AGH [42] has already achieved excellent

retrieval performance in mammogram data [83], and MIPS is specially designed for

the neuron morphological retrieval problem. The above three methods are batch

based method, which can not update the retrieval model after relevance feedback.

Thus, for fair comparison, the retrieval model of these methods are trained through

the currently entire 17, 107 Drosophila Melanogaster neuron database. Consistent

with previously experimental setting, we employ the 233 uPNs as queries to validate

the retrieval performance.
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Table 5.1 reports the average retrieval precision of four competitive methods un-

der different number of retrieved neurons. For our interactive method, the retrieval

precision is recorded after 3 rounds of feedback. According to Table 5.1, our method

can achieve the highest precision under different number of retrieved neurons. These

results verify the proposed method is effective for the neuron retrieval problem. It

mostly benefits from the interactive strategy which introduces users in the loop to give

feedback for the coarse retrieval results. Specifically, based on the user’s feedback,

our method can re-rank unlabeled neurons by the newly designed similarity measure.

We randomly select a query neuron and present its top-20 retrieval results in Fig. 5.2

under different rounds of feedback. We employ Vaa3D [2] software to display these

neurons. The neurons with green frames are relevant to the query, and neurons with

red frames are not relevant to the query. Generally, the retrieval performance has

a significantly improvement from coarse results to the results after user feedback,

which verifies the effectiveness of the proposed interactive strategy. We also find that

with the increased numbers of feedback rounds, the retrieval performance improves

accordingly. This is because of the increasingly labeled neurons, providing more

information for re-ranking. In addition, according to Fig. 5.2, many non-relevant

neurons also present similar morphologies with the query, which are usually hard to

differentiate through traditional retrieval methods. Thus, our interactive strategy is

a good choice for the fine-grained neuron retrieval problem.

In our interactive neuron retrieval, two parameters may influence the final perfor-

mance, i.e., the outer scope size Z and the inner scope size z. In the interactive

part, we only consider the refinement of top-Z ranked neurons from coarse retrieval

results. Fig. 5.3(a) shows the average retrieval precision with different outer scope

sizes after the 1st to 10th feedback rounds, taking top-30 retrieved neurons into ac-

count. In Fig. 5.3(a), we find that with the outer scope size ranging from 200 to 500,

the retrieval precision has not changed too much. This is because the majority of
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Figure 5.2: Query example of the proposed method under different rounds of feedback:
green framed neurons are relevant with the query, while red framed are non-relevant
neurons.

relevant neurons are already included in a small sized outer scope (e.g., Z = 300).

A larger outer scope may include more relevant neurons, but non-relevant and noisy

neurons are also included which will influence the retrieval performance. Moreover,

the inner scope size z is the number of neurons we provide to users in each feedback

round, which can also influence the final performance. Fig. 5.3(b) presents the re-

trieval precision with different inner scope sizes after the 1st to 10th feedback rounds.

According to Fig. 5.3(b), the larger z can achieve better performance compared with

smaller z values. This is easy to understand since a larger z will contain more feedback

information which can help us to re-rank the coarse retrieved neurons.

5.4.2 Demonstration of Neuron Visualization

Fig. 5.4 presents some screen shots of our visualization results. The developed

AR program can interactively and immersively visualize neurons in different scales

and different view angles. As shown in Fig. 5.4, the program can first present some

retrieved neurons to users using our neuron retrieval method. Then users can utilize
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(a) (b)

Figure 5.3: Retrieval performance with different parameter settings: (a) retrieval
precision with different outer scope size after 1st to 10th feedback rounds; (b) retrieval
precision with different inner scope size after 1st to 10th feedback rounds.

the HoloLens built-in “finger tap” gesture to select an interested neuron for further

analysis. Once selected, various voice commands, created by us but powered by

Microsoft “Cortona” voice assistant technology, can be used to identify the type of

interaction to be performed on neurons. We included functionality allowing users to

move, scale, and rotate the selected neurons. Users can also use the built-in “pinch”

gesture along with hand motions to manipulate neurons. This provides a simple

and intuitive way for users to interact with the visualizations, and to do so from

any position in the environment. The screen shots in Fig. 5.4 can only provide a

glimpse of how our program works, where it lost the biggest benefits that are gained

freeing users from a screen. Compared with other neuron visualization techniques

(e.g., Vaa3D software [2]), the main advantage of our AR based program is that it

can visualize neurons in an interactive and immersive way, and thus help users taking

a deep and comprehensive analysis of neurons.

5.5 Summary

In this chapter, we present an interactive neuron mining framework, which bring

users in the loop to improve the neuron mining performance and visualize neurons in

an interactive and immersize manner. Particularly, users can observe the fine-grained
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(a) (b) (c)

Figure 5.4: The screen shots of neuron visualization and analysis using the Microsoft
HoloLens AR headset: (a) visualize some of the retrieved neurons; (b) manipulate
and enlarge interested neurons ; (c) continue to enlarge neurons, interactively analyze
their fine-grained details.

details of neurons based on recent advances of augmented reality techniques. Our

system can receive the relevance feedback from users’ observation, then updating the

retrieval performance by re-ranking the similarity measure between the query neuron

and its top retrieved neurons. Experiments verify the efficacy of our neuron retrieval

framework and also illustrates its application in neuron exploration. Based on the

present work, we will develop a comprehensive tool for efficient and accurate neuron

mining, which can help biologists to explore and analyze unknown neurons.



CHAPTER 6: Applications

6.1 Motivation

The above sections propose multiple methods in tackling the neuro-morphological

analysis for large-scale databases. Despite these methods have achieved state-of-the-

art performance in neuronal feature representation and binary coding, how to inte-

grate and present the mining results to users are still challenging problems, where the

current outputs are simply retrieval precision curves and some hand-crafted retrieval

results. Considering the practical requirements of users in analyzing the large-scale

neuron databases, more intuitive and comprehensive results should be provided for

further mining and exploration. Therefore, systems and tools need to be developed

to integrate the proposed methods and mining results in a generalized framework.

Currently, there has been several systems developed for the exploration of neuron

morphology. For example, BlastNeuron [8] is developed for automated comparison, re-

trieval and clustering of 3D neuron morphologies. This software pipeline first employs

global morphological features to identify similar patterns in neuron databases. Based

on the retrieval results, BlastNeuron [8] performs clustering analysis to detect biologi-

cally meaningful neuron classes, and neuron comparison for reconstruction alignment.

More recently, an advanced tool for morphological search and retrieval in neurosci-

entific image databases is presented, i.e., Neuron-Miner [9], which is an Android app

for neurons’ similarity search. This app can achieve neuron search by set the neu-

ron name in NeuroMorpho [1] database as input. Additionally, NBLAST [26] is an

online neuron search engine, which focus on measure the pairwise neuron similarity.

This search engine is developed for the neurons in drosophila melanogaster, which

can map each neuron in the drosophila’s brain model. Despite the above systems
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are effective in solving neuron mining problems, there are still multiple aspects that

can be explored to further improve the performance and usability of neuron mining

systems. Firstly, the neuron search performance, i.e., precision and efficiency, can be

further improved, especially tackling the continuously expanding large-scale neuron

databases. Secondly, more semantic results should be provided in the system for

neuron mining, instead of simply provide the results of neuronal morphology. The se-

mantic results can be the neurons’ functional properties, brain regions, transmitters,

etc.

Taking the above requirements into account, this section first presents our system

for neuron retrieval and analysis, based on the novel methods we proposed in previ-

ous sections. Particularly, the system is a fully online search engine, which embed all

datasets and methods in the server side, and enable every process on-the-fly without

any installation and configuration. The developed system can not only achieve accu-

rate and efficient neuron retrieval in real-time, but also provide abundant semantic

information for all neurons in helping neuron exploration and knowledge discovery.

Moreover, we demonstrate and discuss applications of this system in multiple neuron

mining use cases, including the identification of unknown neurons, clustering neurons

with different similarity level, and comparison of different neurons to refine the neuron

reconstruction.

6.2 Online Search Engine for Neuronal Retrieval

As discussed above, despite there are several neuron search systems developed [8,

9, 26], the performance and usability of the above systems can be further improved.

Particularly, when designing the neuron search system, multiple factors need to be

considered, i.e., 1) the whole system need to achieve the neuron retrieval with high

accuracy and efficiency, which can accurately find similar neurons in real-time; 2)

the system can provide abundant information related to neuron’s semantic meaning,

which can help users to correlate neuronal morphologies with functional properties; 3)
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Neuron Name

Retrieved Similar Neurons

Retrieved Details

Figure 6.1: The main webpage of our online neuron search engine, which includes the
query panel (left part), and the retrieval panel (right part).

the system need to be easily used, where users can process the whole pipeline without

installation and configuration. In this section, we present our online search engine for

the large-scale neuron morphological retrieval and mining. Especially, we introduce

the implementation of online search engine in both browser side and server side.

6.2.1 Browser Side

Fig. 6.1 presents the main webpage of our online neuron search engine. The left

part of the webpage is the input panel. Users can click the “upload” button to se-

lect one neuron file from local, the left panel will subsequently visualize this selected

neuron and the corresponding neuron name. When users want to find its most sim-

ilar neurons in the large-scale database, simply click the “submit” button can get

the results on-the-fly. As illustrated in Fig. 6.1, the right panel can present the

top similar neurons and neuron names with respect to the query neuron on the left

panel. Users can observe and compare these retrieved neurons for further analysis

and mining. Moreover, by clicking the “Details” button on the top right, our sys-

tem can provide the detailed semantic information for each retrieved neuron. As

shown in Fig. 6.2, the left panel provide the query neuron, while the right panel se-

quentially provide the neuron images and corresponding information for each neuron,
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Figure 6.2: The webpage in providing detail semantic information for the retrieved
neurons.

including the species name, development stage, brain regions, cell classes, etc. Gen-

erally, these semantic information can help users have a deep understanding of each

retrieved neuron, in comparison with the query neuron in both morphologies and

functional properties. Currently, our system support the input of “png” images with

the neuron name appeared in NeuroMorpho [1] database. The link of our webpage

is: http://45.40.199.91:8008/home/main/, users can directly download the presented

neurons and set them as input for further retrieval and analysis.

6.2.2 Server Side

After presenting the browser side of our system, we introduce how the online neuron

search engine can be achieved in the server side. Fig. 6.3 demonstrates the overall work

flow of our system in the server side, which is composed into three layers, i.e., interface

layer, business layer and database layer. Here, we introduce the communication

details among these three layers:

1. Interface Layer: this layer plays as the interface between users and the server

side. According to the browser side design described above, this layer include

three input process, i.e., upload the query image, submit the request of neuron
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retrieval, and submit the request of providing detailed semantic information for

each retrieved neuron. Besides, this layer also include three output process, i.e.,

visualize neuron images of retrieval results send by the business layer, neuron

names with regard to the retrieved neuron images, and the semantic informa-

tion correspond to the retrieved neurons. Basically, this layer has two functions:

1) receiving inputs from users and sending the input information to the busi-

ness layer; 2) receiving information from the business layer and presenting the

retrieved information for users to visualize and analyze;

2. Business Layer: this layer plays as the connection between interface layer and

database layer, as well as the processing of the whole retrieval framework. In

the business layer, it first receive the inputs from interface layer. For the input

“upload”, this layer save the uploaded images with their neuron names and stored

them in the cache. Then it sends them to the interface layer for visualization.

For the input “submit”, this layer first capture the current neuron from the

cache, querying the similar neurons in the database layer and then return the

retrieved neuron images as well as names to the interface layer. For the input

“Details”, the business layer use the cache of image data to query the semantic

information of retrieved neurons in the database, then sending these results to

the interface layer. Basically, the business layer has two functions: 1) receiving

requests from interface layer, processing these requests and returning the results

to the interface layer; 2) querying tasks with the database layer, and receiving

query results from the database.

3. Database Layer: this layer stores the neuron data set and related databases

to meet the request from business layer. The database layers can respond the

request from the business layer with regard to the query of neuron images,

neuron names, similarity ranks, etc. Especially, we design an database in this
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Figure 6.3: The work flow of our designed neuronal retrieval system in server side.

layer with abundant information for neuron retrieval. For each neuron, the

database stores its corresponding neuron IDs, neuron names, neuron images,

list of similar neurons’ ID, and neuron’s functional properties. When business

layer request for a neuron retrieval task, the database layer can first index the

query neuron and then return a set of similar neurons’ ID. Based on these

IDs, the database layer can subsequently return the retrieved neuron images.

Basically, the database layer has two functions: 1) storing the relevant dataset

for neuron retrieval; 2) returning the query request from business layer.

Based on this neuron search system, users can effectively explore neuron datsets

and correlate neuron morphologies with their functional properties. Particularly, com-

pared with previous neuron search systems, advantages of our system can be reflected

in three aspects: 1) the methodological superiority of accuracy and efficiency in our

system can make sure the fine-grained neuron retrieval in real-time, which mainly

benefits from our proposed feature representation and binary coding; 2) the designed

system is a web-based program which is easy to use, without any installation and con-
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figuration, which is particularly suitable for the user interactive mining ; 3) compared

with previous systems, we provide two panels in displaying both neuron morphologies

and detailed semantic information of each retrieved neuron, where users can either

compare the morphology or semantic information among all retrieved neurons.

6.3 Use Cases

Considering the excellent performance the proposed methods have been achieved

and the online search system have been developed, it is possible to apply them in

the exploration and mining of neuronal morphology. Particularly, our methods and

system can be used in neuron mining tasks such as neuron identification, clustering,

comparison, etc. Here, we demonstrate and discuss multiple use cases of our methods

and system.

6.3.1 Neuron Identification

One important use case of our framework is the exploration and analysis for un-

known neurons. Currently, despite the fact that an increasing number of neurons are

reconstructed and added to the public databases, most of them are not well identified

and lack basic annotations, such as cell classes and brain regions. Nanda et al. [14]

propose to annotate brain regions and cell classes for the NeuroMorpho [1] database.

They employ the text-based query tool to search neurons with given lengths (e.g., 10,

20 microns) in each region to determine their brain regions, then identify cell classes

based on the brain regions invaded by the neurite terminals of every neuron. This

method may inefficient and unreliable, which the annotations are mainly obtained by

empirical measurement. Therefore, identity of unknown neurons is an urgent demand

in current neuron repositories.

Considering that neuron morphologies are associated with their properties, and our

neuron retrieval framework can search similar neurons at a fine-grained level. It is

reasonable to employ our framework to conduct neuron exploration via examining
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Figure 6.4: Illustration of two unknown neurons and their top-5 retrieved neurons
through the proposed method.

retrieved neurons, which have similar morphologies. To demonstrate this, we random

select two query neurons from NeuroMorpho [1], whose neuron types are assumed

to be unknown. After running our neuron retrieval framework, Fig. 6.4 illustrates

their top-5 similar neurons respectively. For the two query neurons, we find that

their corresponding top-5 similar neurons all have the same neuron types, i.e., in

NeuroMorpho [1], the 5 neurons in first row are annotated as antennal lobe and

uniglomerular projection (uPNs), the 5 neurons in the second row are annotated

as peripheral nervous system and multidendritic-dendritic arborization. Therefore,

we can infer that the two query neurons also have the same type with their top-5

retrieved neurons. The information provided in NeuroMorpho [1] also verifies our

inference about the two query neurons. In practical situations, we can employ more

retrieved neurons (e.g., top-30 similar neurons) to statistically identify and analyze

query neurons.

Our methods and system can accurately and efficiently achieve the above neuron

retrieval task, as it is designed for the exploration of large-scale neuron databases.

The method will be particularly suitable in the future since big data is one major

direction in neuroscience [3]. Besides the efficiency, for some specific neuron databases

which are not very large (e.g., considering neurons in some specific brain regions
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Figure 6.5: A prototype of hierarchical clustering, including three coarse clusters
(yellow, green, magenta) and two fine-grained clusters (cyan diamond and square).

with only hundreds of neurons), exhaustive search and comparison can be applied to

achieve more accurate results. In addition, extracting more representative features for

the 3D neuromorphological data will be also helpful to improve the neuron retrieval

performance.

6.3.2 Latent Pattern Discovery and Exploration

Currently, the taxonomy of neurons are still insufficient, especially in the recently

released large databases, where many neurons are grouped together simply because

they share same transmitters or locate in same brain regions. In the field of neu-

roscience, neuron type classification is a long-term research topic. As neurons has

diverse molecular, morphological, connectional and functional properties, it is bele-

vied that the only realistic way to manage this complexity, and thereby pave the

way for understanding the structure, function and development of brain circuits, is

to group neurons into types, which can then be analyzed systematically and repro-

ducibly [92]. For the neuron classification, one critical taxonomy is based on their

morphology, where the neuromorphology has a strong relevance with neuronal con-
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Figure 6.6: Four query neurons (red) and their corresponding most similar neurons
(blue) after searching in the NeuroMorpho [1] database, which can be further used
for neuronal comparison and analysis.

nection and functional property. Considering that the hierarchical clustering can

group neurons with multiple levels of relevance [8, 26], it is possible to improve the

taxonomy of neurons using our feature representation and binary coding methods.

Fig. 6.5 illustrates a prototype of hierarchical clustering. The three coarse clusters

(circle, diamond, square) can only distinguish neurons which have significant differ-

ences, while the two fine-grained clusters (purple circle and half purple circle) can

reveal the subtle differences, i.e., these two clusters of neurons are quite relevant

but belong to different categories. In practice, such fine-grained clusters can help to

discover and define latent patterns of neurons.

The other use case of our system is neuron comparison. As shown in Fig. 6.6, we

random select four neurons (red) as queries, then finding their most similar neurons

(blue) after searching in the NeuroMorpho [1] database, using the proposed neuron

mining methods. According to Fig. 6.6, query neurons demonstrate high degree of

similarities in comparison with their retrieval results. On the basis of this accurate



73

results, neuron comparison can be applied for several neuron exploration tasks. For

example, by analyzing the topological morphology of two similar neurons with branch

to branch comparison, their fine-grained difference can be pinpointed with quantita-

tive results. These results can be used to quantitatively describe the difference of

morphologies with their corresponding functional properties. In addition, our neu-

ron mining system can provides useful information to help neuroscientists explore

neurons and investigate the relationship between their morphologies and functional

properties. How the morphology influences and determines neuron’s functional prop-

erty? Which parts of difference in neuron’s structure lead to their diversity in certain

functions? All these questions have great significance to achieve the ultimate goal

in neuroscience, i.e., understanding brain working mechanism and consciousness. We

are able to explore the correlation of neuron morphologies and functional properties

from macro to micro. The available large-scale databases provide a macro platform

with massive information of neuron morphologies and functions. Then, our mining

system can efficiently retrieve and cluster neurons in fine-grained levels, with similar

morphologies and corresponding semantic meaning.

6.4 Summary

In this chapter, we present applications and use cases of our neuron mining frame-

work. Particularly, we first introduce our designed system of real-time neuron retrieval

based on the aforementioned feature representation and binary coding methods. The

developed system is a web-based online search engine, which can provide similar re-

trieved neurons, as well as their semantic information for neuroscientists to explore

and analyze neurons. Moreover, we demonstrate multiple use cases of our proposed

methods and system, such as neuron identification in finding semantic information for

unknown neurons, neuron classification and clustering in unveiling latent taxonomy

of massive neurons, and neuron comparison in correlating neuron morphologies with

their functional properties.



CHAPTER 7: CONCLUSIONS AND FUTURE WORKS

Conclusions: In this dissertation, we present effective solutions for the computa-

tional analytics of large-scale neuro-morphological datasets. Particularly, we propose

a series of methods in dealing with related problems of neuron mining and exploration,

including quantitative descriptions of 3D neuron morphology, large-scale neuron min-

ing, interactive neuron exploration and visualization. We first develop methods to

quantitatively describe neuron morphologies using advances of deep learning tech-

niques, which can achieve the feature representation of massive 3D neurons with the

discrimination of their subtle difference. Then, binary coding method are introduced

to tackle the neuron retrieval and mining in large-scale databases. We present two bi-

nary coding methods, i.e., MIPS based binary coding and online binary coding, which

can successfully tackle the linearly inseparable and continuously expanding neuron

data in respective. After receiving the mining results (e.g., the retrieved neurons),

we bring users in the loop for neuron analysis, where users can provide relevance

feedbacks to improve the neuron retrieval performance. To help users explore and

analyze neurons in an interactive and immersize manner, we develop a neuron visu-

alization program based on frontiers of augmented reality techniques. Moreover, we

embed the proposed methods in an online neuron search engine, which can perform

real-time neuron retrieval and mining by providing neuron morphologies and semantic

information in a web-based system. Experimental results validate the effectiveness of

our proposed methods in tackling the computational analytics of large-scale neuro-

morphological datasets, in comparison with other related state-of-the-arts. We also

demonstrate multiple applications and use cases of our neuron mining system in fa-

cilitating the research of neuroscience.
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Future Works: Based on our current work in the mining of large-scale neuro-

morphological datasets, multiple aspects can be explored in future works to either

continuously improve the neuron mining performance, or apply mining results in

solving problems of neuroscience.

To improve the neuron mining performance, three aspects in our current works,

i.e., quantitative description, large-scale mining, and interactive exploration, can be

further investigated. Especially, for the quantitative description, the future works can

be addressed in: 1) boosting the feature representational power, which focus on devel-

oping advanced deep neural works that can take the spatial information of 3D neuron

structures into account; 2) fully automated representation of 3D neuromorphology,

which can directly learn neuron features from the original SWC format data, using

newly designed deep neural networks end-to-end, without any hand-crafted interven-

tion, e.g., variational autoencoders [93]. For the large-scale mining, the future works

can be addressed in: 1) considering the diversities of different kinds of features when

learning the binary coding functions, where the multiple neuron features usually have

different levels of similarity measure [94, 75]; 2) embedding deep neural networks in

the learning of coding function, unsupervised deep hashing, which can achieve excel-

lent coding performance with online updating scheme [95, 96]. For the interactive

exploration of neuro-morphological datases, the future works can be addressed in: 1)

improving the usability of human interaction, where we propose to develop multiple

tools for users to provide relevance feedback in more convenient way; 2) enhancing the

mining performance after using new interactive methods, which can directly update

the whole similarity matrix after receiving the relevance feedback from users, instead

of just updating the retrieval performance of current query neurons.

To apply mining results in solving problems of neuroscience, such as neuron clus-

tering, classification and comparison, multiple new methods and systems need to be

developed. For example, to achieve more accurate and reliable results in neuron clus-
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tering and pattern discovery, coarse to fine approaches are required for the hierarchical

neuron clustering, where the similarity measure need to be considered from global to

local among massive neurons. For the neuronal comparison, a branch-to-branch align-

ment are required to quantitatively compute the difference between pair-wise neurons.

In the future, our ultimate goal is to develop a comprehensive system, which can help

neuroscientists to interactively explore large-scale neuron databases, from original

neuron data to final mining results end-to-end, in real-time.
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