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Abstract

Knowledge-assisted visualization has been a fast growing field because it directly integrates and utilizes domain knowledge to
produce effective data visualization. However, most existing knowledge-assisted visualization applications focus on integrating
domain knowledge that are tailored only for specific analytical tasks. This reflects not only the different understandings of what
“knowledge” is in visualization, but also the difficulties in generalizing and reapplying knowledge to new problems or domains.
In this paper, we differentiate knowledge into two types, tacit and explicit, and suggest four conversion processes between them
(internalization, externalization, collaboration, and combination) that could be included in knowledge-assisted visualizations. We
demonstrate the applications of these four processes in a bridge visual analytical system for the US Department of Transportation
and discuss their roles and utilities in a real-life scenarios.
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1. Introduction

The incorporation of knowledge into the process of solving
analytical tasks is a fast emerging area in visualization. With the
insights and reasoning artifacts that knowledge-assisted visu-
alization provides, the experts are more capable of performing
complex analytical processes. Currently, there are some notable
research focused on this new area that demonstrate the value
of integrating domain knowledge into visual analytics systems.
Xiao et al. [1] presented a traffic analysis system to analyze
network traffic using knowledge representation. Also Chang
et al. [2] provided the city planning experts’ insights through
integrating the knowledge of urban legibility into geospatial vi-
sualization. Although these works have significance in helping
reasoning and visualization, with few exceptions, the process
of knowledge integration utilized in these systems is often spe-
cific to the analytical tasks or the domain, making it difficult to
generalize to new problem areas.

From a theoretical perspective, the main cause of this wide
range of applications is the lack of a unified definition of knowl-
edge. Burkhard used the term “knowledge” in visualization
when defining the term “Knowledge” Visualization as “the use
of visual representations to improve the transfer of knowledge
between at least two persons or group of persons” [3]. While
this definition is valid, we propose that it is too narrow and re-
strictive of how knowledge could be applied in visualizations.
Our definition of knowledge is therefore different. We believe
that knowledge is a deterministic process that encapsulates a
collection of information [4]. Throughout the rest of the pa-
per, we will be using the later definition when using the term
“knowledge.” Our approach focuses on representing knowl-
edge rather than data or information by determining the values
of knowledge through understanding the data or information.
Although finding and understanding important knowledge are
extremely difficult, we begin with understanding the definition

of knowledge and the user’s analytical procedures. Specifically,
we differentiate knowledge into tacit knowledge (personal, con-
text specific, hard to formalize and communicate) and explicit
knowledge (transmittable in a formal, systematic language) [5].
With this differentiation, we can formulate four knowledge con-
version processes in knowledge-assisted vitalization: internal-
ization, externalization, collaboration, and combination. A de-
tailed explanation about each process is provided in section 3.

Based on the definition of knowledge and four knowledge
conversion processes, we present a visual analytical system for
bridge management for the US Department of Transportation.
This system is visual in that it presents four important perspec-
tives through visual representations: geospatial, temporal, re-
lational and per-bridge detail. More importantly, it is directly
connected to an ontological knowledge source and supports in-
teractive data analysis to relate the user’s domain knowledge
to the ontology. We demonstrate that the four knowledge con-
version processes of building (internalizing), generalizing (ex-
ternalizing), sharing (collaborating), and merging (combining)
knowledge help the analysis of bridge data by showing their
utilities in two real-life scenarios.

The paper is arranged as the following. First we pro-
vide a detailed explanation of different definitions of knowl-
edge (section 2). Based on our understanding of knowl-
edge, we present the four knowledge conversion processes for
knowledge-assisted visualization in section 3. In section 4, we
demonstrate an example how these processes could be incor-
porated in a visual analytical system. Finally we conclude this
paper following a brief discussion.

2. Definition of Knowledge

To develop four knowledge conversion processes in
knowledge-assisted visualization [6], we must first know what
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knowledge is. In knowledge management literature, it has been
established that distinguishing between data, information, and
knowledge is important to designing knowledge management
programs [7]. Work by Syed and Shah [4] reviews various
definitions and explanations of the DIKW (data, information,
knowledge, wisdom) hierarchy and focuses on presenting a
model that explicates the relationship between data, informa-
tion, and knowledge. In Syed and Shah’s model, knowledge
is defined as the range of one’s information. However, Dav-
enport and Prusak [8] state that “knowledge derives from in-
formation as information derives from data” and further define
knowledge as “a fluid mix of framed experience, contextual in-
formation, values and expert insight that provides a framework
for evaluating and incorporating new experiences and informa-
tion.” In Davenport and Prusak’s perspective, knowledge is the
refined information in which human cognition has added value.
In other words, information becomes knowledge through cog-
nitive effort. Based on this definition, we think that knowl-
edge can only result from human cognitive process that in-
cludes perceiving, recognizing, conceiving judging, reasoning,
and imagining [9]. It also shows that knowledge fundamentally
involves relationships either among information or other pieces
of knowledge.

Nonaka and Takeuchi [5] differentiate knowledge as tacit
knowledge and explicit knowledge to understand how knowl-
edge is shaped and how knowledge can be applied. In their
definition, explicit knowledge can be processed by a computer,
transmitted electronically, or stored in a database. On the other
hand, tacit knowledge is personal and specialized and can only
be extracted by human. We extend Nonaka and Takeuchi’s con-
cept on knowledge conversion modes and apply them to visu-
alization. We believe that through the use of interactive visu-
alization tools, analysts can experience the interaction between
tacit and explicit knowledge. To further delineate tacit and ex-
plicit knowledge in knowledge-assisted visualizations, we pro-
pose that:

• Explicit knowledge is different from data or information.

• Tacit knowledge can only result from human cognitive
processing (reasoning).

• Explicit knowledge exists in data, and is independent from
the user or his tacit knowledge.

• Explicit and tacit knowledge are related and can be con-
nected through the use of interactive visualization tools.

Explicit knowledge, extracted from data or information, is
represented as a visualization, which is received both percep-
tually and cognitively by the user via an image. The cognitive
processing leads to an understanding and an increase of user
tacit knowledge which recursively affects subsequent percep-
tion and cognition. Tacit knowledge guides the user’s interac-
tion and exploration so that the visualization changes over time.
Based on the analytical expression of visualization proposed by
van Wijk [10], tacit and explicit knowledge can be expressed as

a set of equations:

Ke = f (D); I(t) = V(Ke, S , t);
dKt

dt
= P(I,Kt) (1)

where explicit knowledge Ke is a function and an extraction
of data f (D). Using explicit knowledge Ke, specifications S ,
an image at time t, I(t), can be generated by the visualization
system V . van Wijk [10] provides a detailed explanation about
how the user interactively gains knowledge in using a visual-
ization; the image I is perceived by P and understood by the
user, resulting in an increase of the user’s knowledge. We be-
lieve that the user’s gained knowledge is tacit Kt and depends
on the image I and the current knowledge state Kt of the user.
Since the amount of explicit knowledge Ke that exists in a com-
plex dataset D could be nearly infinite, Kt can be expressed and
stored in a knowledge database (KB) as a collection of smaller
knowledge artifacts (Ke1 to Ken ). The challenge of creating a
visualization therefore becomes the determination of the most
relevant and valuable collection of knowledge to display to the
user. Figure 1 shows a graphical representation of how explicit
knowledge can be represented and where tacit knowledge might
be located.

Figure 1: A graphical representation showing four entities: data, knowledge
database, visualization, and user. Once explicit knowledge is extracted from
the data. It is stored in a knowledge database (KB) and used in visualization to
represent it to a user. The user continuously perceives the image and gains tacit
knowledge.

3. Knowledge Conversion Processes in Knowledge-assisted
Visualization

Based on the proposed definitions of tacit and explicit knowl-
edge, we provide four knowledge conversion processes in
knowledge-assisted visualization: Internalization, Collabora-
tion, Externalization, and Combination. These four knowledge
conversions are first introduced by Nonaka and Takeuchi [5] in
which they focus on how knowledge can be processed and con-
verted from one to another in business models. For knowledge-
assisted visualizations, we propose that the four processes are
also applicable because the functions of an analysts in percep-
tually and cognitively understanding represented information to
create concrete knowledge using a visualization is similar to
that of analysts in business practices. Here we present the four
conversion processes as applied to visualizations.

3.1. Internalization

In psychology, internalization is defined as the process of ac-
cepting the established set of norms, which are influential to
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the individual [11]. It is regarded as a cognitive process of
acquiring skill and knowledge. In knowledge-assisted visual-
ization, we propose that visually representing explicit knowl-
edge would support analysts in understanding and transform-
ing the explicit knowledge into tacit (internal) knowledge. As
proposed by Nonaka and Takeuchi [5] the internalization pro-
cess starts with a user discovering what the explicit knowledge
is, followed by a series of steps in understanding why the ex-
plicit knowledge is of value or why it makes sense, until finally
the user accepts the knowledge as their own viewpoint or in-
ternal knowledge (Figure 2). From a visualization perspective,
this process parallels the concept of “insight discovery” that has
been noted as the goal of visualization [12]. Since discovering
insight is strongly related to building a user’s tacit knowledge
based on explicit knowledge in the data, the internalization pro-
cess can be thought of as the primary goal and process of using
a traditional (not knowledge-assisted) visualization.

Figure 2: Internalization process (indicated by the red arrows). It explains that
the user continuously builds tacit (internal) knowledge based on perceptually,
cognitively, and interactively incorporating the represented explicit knowledge
in a knowledge-assisted visualization.

3.2. Externalization

Externalization is the process of articulating tacit knowl-
edge into explicit concepts [5]. It is a generic knowledge cre-
ation process through which tacit knowledge becomes explicit
based on the user’s finding (insights), concepts, hypotheses,
and models. In the visualization community, there have been
a few applications that specifically focus on the the external-
ization of one’s tacit knowledge. Garg et al. [14] presented
a model-driven approach to extract Logic Programming (LP)
rules through a user’s interactions and reused the rules in further
analysis processes. Xiao et al. [1] studied how the knowledge-
base could be used to improve understanding of complex net-
work traffic data. They found that about 80% of network traffic
could be classified correctly based on previously extracted ex-
perts’ knowledge-base. Chen et al. [6] showed an example in
which the user’s insights can be externalized into a knowledge
database. These applications have shown that not only is exter-
nalization in a visualization possible, it is in fact a very powerful
method for storing and reusing knowledge.

Figure 3 shows how tacit knowledge can be externalized into
explicit knowledge. In this figure, explicit knowledge is stored
in a knowledge database and used to create visual representa-
tions. Because of the complex nature of explicit knowledge,
Nonaka and Takeuchi suggest that externalization is the process
of concept creation and is triggered by dialogue or collective re-
flection [5]. They further explain that the concept creation pro-
cess can be expressed by applying analytical and non-analytical

methods alike. The analytical methods are deduction and in-
duction through which appropriate concept can be deduced and
induced based on unorganized concepts. However, if applying
analytical methods is not feasible, non-analytical methods such
as metaphors and/or analogies could also be used. In visualiza-
tion, we propose that both analytical and non-anlytical methods
should be considered for expressing explicit knowledge that can
in turn be stored into a knowledge database [1, 14].

Figure 3: Externalization process (indicated by the red arrow). It shows that the
internally created tacit knowledge can be extracted and saved into the knowl-
edge database. The explicit knowledge can later be reused to create further
visual representations.

3.3. Collaboration
Collaboration is the process of sharing tacit knowledge be-

tween people. In knowledge management literature, it is de-
fined as socialization [5]. Although both collaboration and so-
cialization represent learning from others, we use the term col-
laboration because it is commonly used in computer science
and has a history of implying sharing knowledge, learning, and
building consensus through the use of computers. In visual-
ization, building collaborative visualization environments also
has a long history [15, 16]. Johnson [16] defined that collab-
orative visualization is a subset of computer-supported cooper-
ative work (CSCW) in which control over parameters or prod-
ucts of the scientific visualization process is shared. Prior to
that, Coleman et al. [15] provided generalizable reasons why
collaborative visualization is compelling: (1) experts’ knowl-
edge could be available any time and at any place. (2) The
expertise is transferred to others, improving the local level of
knowledge. (3) Based on the supported accessibility, visual-
ization products can be reviewed and modified as they are pro-
duced, reducing turn-around time. (4) The remote accessibility
also helps to avoid relocating the expertise physically. More
recently, Burkhard proposed a collaboration process of trans-
ferring knowledge between at least two persons or group of
persons [3]. Similarly, Ma [17] noted that sharing visualiza-
tion resources will provide the eventual support for a collabora-
tive workspace. He discussed existing web-based collaborative
workspaces in terms of sharing high-performance visualization
facilities and visualizations and findings. He also showed sev-
eral existing collaborative workspaces such as TeraGrid [18],
Many Eyes [19], etc (see [17] for detail).

Figure 4 shows how two visualization users could collabo-
rate and share their tacit knowledge with each other. In this dia-
gram, we show that the collaboration process can occur through
the use of collaborated visual environments. However, the most
natural method for sharing knowledge is still direct commu-
nication between the users (via phone, email, instant messages,
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etc.). In either case, the users are actively sharing their discover-
ies and tacit knowledge and incorporating each other’s domain
expertise into their own.

Figure 4: Collaboration process (indicated by the red arrows). Collaboration
is a process of sharing tacit knowledge through the use of a visualization or
through direct communication.

3.4. Combination

Combination is the process of systemizing explicit concepts
into explicit knowledge system [5]. Since explicit knowledge
exists everywhere in books, research papers, and communica-
tion networks (user groups), etc., the process of combining dif-
ferent bodies of explicit knowledge is important. For instance,
genomic data have been used in many different research areas:
biology, bioinformatics, computer science (including visualiza-
tion), health & medical science, etc., and depending on the do-
main, researchers have derived different, yet equally important
findings. In order to fully comprehend the knowledge associ-
ated with such genomic data, it is necessary to combine findings
from different domains and integrate them into a cohesive set of
explicit knowledge.

Figure 5 shows a simple model of combining explicit knowl-
edge into an existing knowledge-base. Behind this simple dia-
gram, however, additional considerations need to be addressed
in order to maintain the quality and integrity of the knowledge-
base when combining new explicit knowledge with an existing
source. If unrelated or incorrect knowledge is combined with
the existing explicit knowledge, it could degrade the overall
trustworthiness of the knowledge-base as well as the benefits
of representing knowledge in a visualization. While we are not
aware of any known visualizations that support the verification
and validation process when combining explicit knowledge,
in Knowledge Engineering literature, researchers have long
been studying how to verify and validate underlying knowledge
when developing a knowledge-based system [20]. The specifics
of knowledge management and engineering is outside the scope
of this section, but will be discussed it further in the future work
section (section 5).

Figure 5: Combination process (indicated by the red arrow). Explicit knowl-
edge can be combined with existing explicit knowledge in a knowledge
database to further enhance a user’s visual analysis process.

3.5. Associating Knowledge Conversion Processes

We define the four processes described above based on un-
derstanding of the existing knowledge conversion modes [5].
We believe that these four knowledge conversion processes are
also important for knowledge-assisted visualization in that they
can be utilized to creating more effective visual analytical sys-
tems. Internalization is the process of gaining tacit knowl-
edge from continuous interactive analysis and is exemplified
by the human’s reasoning process of finding insights in visual-
ization. Externalization is the process of generalizing the found
insights, concepts, hypotheses, and models during the use of a
visualization into externalized forms. Both analytical and non-
analytical methods can be used to express the findings. Col-
laboration occurs when users share discovered knowledge from
analyzing data in visualization, and it represents an important
facet of knowledge visualization in which a user’s finding is
directly benefiting others. Finally, the users’ findings should
be generalized and integrated into existing knowlege-bases for
future use through the combining process. To the best of our
knowledge, there does not exist any visualization that incorpo-
rates all four knowledge conversion processes, but we believe
that each process represents an important area of knowledge-
assisted visualization and should be considered together in a
holistic way.

4. Applying Knowledge Conversion Processes into Visual-
ization

As shown in Figure 1, a well-designed knowledge database
plays an important role in supporting the knowledge internal-
ization, externalization, collaboration, and combination pro-
cesses. We believe that in order to design a useful visual an-
alytics system that incorporates knowledge, a tightly integrated
and well-designed knowledge database is essential.

There is, however, no definitive way to construct a knowl-
edge database. Many research have focused on designing
and developing different forms of such databases that could
represent domain knowledge. The differences between these
database are not only reflected in their capacities, but also in
their structural complexities. As shown in work by Garg et
al. [14], a knowledge database could be as simple as a textual
structure that contains inductive logic programming equations.
On the other hand, it could also be described by extensive de-
cision models, such as Markov decision process (MPD) in the
Artificial Intelligent field. In our example, we choose to apply
an ontology for storing and retrieving domain specific knowl-
edge.

The ontological knowledge structure is a conceptualization
of domain knowledge which includes concepts, properties and
their relationships. This conceptualization process aims to
transfer both human tacit knowledge and explicit knowledge
into computer-understandable formats. These concepts can be
further utilized to facilitate other users’ problem-solving pro-
cesses. More specifically, a Problem Domain Ontology (PDO)
enables solving a complex problem where the underlying do-
main concepts have high interdependencies by building up a
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problem scenario based on concepts, properties and features in
the ontological knowledge structure.

Although research on ontological knowledge structure have
advanced in the recent years, integrating such structure with
visual analytics system is still an open research area. In the fol-
lowing subsections, we first describe our understanding about
how to integrate these two components, and further present our
prototype of a knowledge-assisted visual analytics system.

4.1. System Overview

(a) (b)

Figure 6: (a) the Venn Diagram that suggests the complementary relationship
between visualization and ontology. (b) the knowledge window provides up-
dated knowledge rules inside the ontological knowledge structure.

4.1.1. The Relationship between Visualization and Ontology
In order to integrate a visualization with an ontological

knowledge structure, we need to understand what their rela-
tionship is and why the integration is meaningful. By exam-
ining visualization and ontological structure separately, we dis-
cover a complementary functional relationship between these
two components when represented as a Venn diagram (Figure
6). As shown in the overlapping region of the Venn diagram,
both visualization and ontological structure share similar func-
tions that could provide specific information in the forms of
visual selections and data queries respectively. Due to the dif-
ferent foci and strengths of the two approaches, the functions
of the visualization and the ontological knowledge structure are
not always the same. Visualization, on one hand, usually allows
the user to interactively explore patterns of the underlying data
from various perspectives; the ontological knowledge structure,
on the other hand, focuses more on representing the conceptual-
ization of domain knowledge and the interdependencies among
the concepts.

A further analysis of this complementary relationship sug-
gests that the integration of these two could be beneficial. If
reasonably integrated, users could discover new concepts and
knowledge through exploring the visualization and external-
ize such knowledge into the ontological knowledge structure
for future references. Users could also directly access the
knowledge structure to acquire predefined domain concepts and
rules to guide them through visual explorations and assist their
decision-making processes.

Thus we hypothesize that through integrating visualization
and ontological structure we could form a useful knowledge-
assisted visual analytics environment. To validate our hypothe-
sis, we present our bridge management system which utilizes
encapsulated knowledge from a domain specific ontological
knowledge structure.

4.1.2. System Implementation

Figure 7: The overview of the knowledge-assisted visualization system. Top
Left: the Knowledge Window. Middle left: the meta data window. Middle:
The Geospatial View. Top Right: the Parallel Coordinate View. Bottom Right:
the Scatter Plot View.

With support from the US Department of Transporta-
tion(USDOT), we implemented a prototype of knowledge-
integrated visual analytics bridge management system. Our
system is consisted of two major components, a visualization
interface that provides interactive data exploration, and an on-
tological knowledge structure that is customized to store and
provide bridge management domain concepts and knowledge.
Through cyclic communications between these two compo-
nents, our system provides bridge managers comprehensive
understanding about their bridge assets and facilitates their
decision-making processes.

Visualization Interface. As shown in Figure 7, our system uti-
lizes a highly interactive visualization interface to help depict
bridge data from three aspects: geospatial, temporal, and re-
lational. Utilizing the rich geo-information provided by Mi-
crosoft Virtual Earth [23], our system provides an interactive
geospatial view for the bridge managers to examine the distri-
bution of bridges as well as their surrounding environments. To
enable temporal analysis, we designed a Treemap-based [21]
small multiples [22] view to represent the temporal trends of
individual bridges with a spatial layout generated based on user-
chosen dimensions. Last but not least, the Parallel Coordi-
nate [24] and Scatter Plot views are dedicated to assist bridge
managers in depicting the relational information among bridges
and their attributes. By tightly coordinating these views to-
gether, our system provides the bridge managers an interactive
data exploration environment that could help them comprehend
complex bridge information from multiple perspectives simul-
taneously.
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The Ontological Knowledge Structure. In addition, an ontolog-
ical knowledge structure is integrated in our system to provide
domain concepts and information. Using an ontology-driven
modeling approach [25, 26], this ontological knowledge struc-
ture contains bridge domain concepts, such as bridge struc-
tural types and locations. These individual bridge concepts are
further connected through their interdependent relationships,
which is modeled based on the experience of bridge managers
and other domain users. By connecting concepts in such a man-
ner, additional domain rules can be identified and created. For
example, a rule can be described as: if a bridge’s sufficiency
rating is below 50 and its super-structure rating is less than 5,
this bridge has potentially undergone severe structural damage.
This rule is then stored in the knowledge structure and can be
executed upon request. Utilizing such a rule-based ontological
knowledge structure allows for great flexibility for our system
to support precise examination of bridges and enables the sys-
tem to better facilitate bridge management processes.

Communication between components. Through a server-client
web interface, our system tightly coordinates the visualization
interface with the ontological knowledge structure. Since these
two components share the same underlying bridge ID number,
the message passing becomes clear and feasible. For example,
any results from the executed rules in the ontological knowl-
edge structure will be immediately updated in each visualiza-
tion window. Thus, exploring within visualization could lead
to new concepts that can be further added into the ontological
structure; while the knowledge stored in the ontology could as-
sist decision-making during the visual exploration.

To assisting bridge managers in executing the domain rules,
our system presents an interactive knowledge window (Fig-
ure 6(b)) which is automatically synchronized with rules within
the ontological knowledge structure. With these two compo-
nents tightly integrated together, the users always have access
to the most up-to-date rules and concepts. The users simply
have to execute the relevant rules, and they can see and interact
with the bridges in further detail immediately in the visualiza-
tion environment.

Furthermore, our system enables the bridge managers to di-
rectly modify the knowledge structure. This function provides
bridge managers an important interface to update the external-
ized knowledge and maintain its accuracy. Based on their dis-
coveries during their interactions with the visualization, bridge
managers could create new concepts or rules and directly in-
sert them into the ontological knowledge structure. For exam-
ple, through their interaction with visualization, bridge mangers
may find that the combination of low ratings (less then 4) on
both “supporting structure” and “water adequacy” suggests wa-
ter erosion and flood damage. The bridge managers could then
insert this new discovery into the ontological knowledge struc-
ture and further re-apply it to check how many bridges have
been affected by water-erosion or damage.

Embedded Knowledge Processes. Since this bridge manage-
ment system is designed based on our definition of knowledge
and its corresponding conversion processes, we can clearly

identify the four different knowledge conversion processes - in-
ternalization, externalization, collaboration, and combination in
its functions:

• The Internalization process embodies the transfer of
knowledge from a computer to a user through the inter-
actions with a visualization. In our system, this process
mainly happens through the user’s interaction with the co-
ordinated visual analytics views. These views help the
users inspect the data from different perspectives and as-
sist the potential discovery of unexpected data patterns and
trends that could become new domain knowledge.

• The Externalization process happens upon the user’s ac-
quisition of new domain knowledge or information that
does not already exist in the ontological knowledge struc-
ture. This knowledge could come from both discoveries
from interacting with the visualization system or from col-
laborating with other co-workers. Once acquired, user
could directly insert this new knowledge into the on-
tological knowledge structure to augment its knowledge
database. The ontology will then store this knowledge and
re-apply it during a user’s future investigations.

• The Collaboration process takes place when a user inter-
acts with our integrated system that incorporates domain
knowledge of multiple experts. Through our integrated
knowledge interface, each bridge managers connects to the
same ontological knowledge structure. New knowledge or
domain rules created by one manager would immediately
be reflected in another bridge manager’s visualization sys-
tem. In this manner, through the use of the ontology as
a central repository of knowledge, our system facilitates
collaboration between multiple bridge managers.

• The Combination process occurs when inserting new
knowledge into the existing knowledge structure. The new
knowledge could come from a new set of domain data,
new perspectives or regulations on bridge inspections, etc.
Since bridge inspection rules vary for different inspection
cycles due to new federal bridge inspection guidelines or
regulations, the Combination process is particularly im-
portant in ensuring that each bridge manager is inspecting
their data with the most suitable domain knowledge. For
example, to handle changes in the standards of water ad-
equacy, our system combines different sets of that criteria
and applies them accordingly to different inspection cy-
cles.

4.2. Scenarios

We performed a qualitative (expert-based) evaluation of our
system with bridge managers from North Carolina and City of
Charlotte Department of Transportation and identified the fol-
lowing scenarios that demonstrate how our knowledge-assisted
visualization system could assist bridge managers’ daily jobs of
examining bridges and making maintenance decisions.
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Figure 8: Close examination of the geospatial view shows that although these
three bridges are on the same river stream, their conditions are different. The
bridge over the upper stream is currently under repair and reconstruction.

4.2.1. Augmenting Visualization through the use of an Ontol-
ogy

According to bridge experts, water erosion and flooding can
cause severe damages to bridges. The pattern for this type of
deterioration is in general typical along river streams. In this
scenario, we demonstrate how our system could help bridge
managers to quickly identify the cause of unexpected bridge
deteriorations through the knowledge internalization process.
This scenario is identified together with city of Charlotte bridge
management team during their examination of causes of water
damage.

Since the criterion for “bridge above water” has already been
externalized in our ontological knowledge structure, the bridge
managers can easily highlight all these bridges in the geospa-
tial view and examine them individually. Through quick ex-
amination on the geospatial view, the bridge managers imme-
diately noticed an interesting pattern in South Charlotte. Al-
though located over the same river, as shown in Figure 8, the
three bridges over that river showed different “present condi-
tions”. The one over the upper stream has already been filed
for replacement and has been under construction. However, the
other two are still in good condition. This pattern is interesting
because if there was a flood, all three bridge should share sim-
ilar deterioration patterns; or at least, they should deteriorate at
a similar pace. Even though temporal information suggest that
these bridges were built at similar times, the changes in their
conditions are drastically different. This inconsistency raised
the bridge managers’ interests.

After a detailed examination of these bridges in the geospa-
tial view, the bridge managers realized that the cause of this
inconsistency was due to the different turns of the river. Ac-
cording to one of the bridge managers, although there was flood

in both the upper and lower parts of this river, the bridge over
the upper stream received the most impact since there were no
bends in the river before the water hit it. On the other hand, due
to the slow down of the river’s speed when the water passed
the second and third bridges, these two bridges received much
less impact. Based on this observation, the bridge management
team was able to quickly identify and internalize this pattern
and re-use it for future reference.

In this scenario, the bridge managers gained insightful
knowledge from interacting with our visualization system and
incorporated it into their tacit knowledge (internalization).

4.2.2. Updating and Sharing Knowledge through Visualization
Since managing bridges is a complex process that often re-

quires precise analysis, it is important for a bridge analyst to
quickly determine the most relevant information to focus on
during an investigation. In this scenario, we demonstrate how
our system facilitates bridge experts through the externalization
of their discoveries and sharing of the findings (collaboration)
to filter out unnecessary data and focus on analyzing the most
relevant information.

A local bridge expert was using our visualization system to
explore the bridge distributions around the Charlotte region.
After a quick examination of the temporal view, the expert no-
ticed that a large group of bridges did not have any ratings infor-
mation (Figure 9(a)). Based on this bridge expert’s experience,
this situation was most likely caused by two reasons: one, it
could be caused by a loss of data or errors during the data en-
try process. Two, these bridges could be outside of the bridge
management team’s jurisdiction. As shown in the coordinated
visualization views (Figure 9(b)), the bridge experts identified
that these bridges were all railroad bridges, which fell into the
second category.

Since the city bridge management team is not responsible for
maintaining these bridges, showing them together with other
bridges can be confusing. In order to reduce this confusion, the
bridge manager created new rules in the ontological knowledge
structure to identify and filter out these railroad bridges. Other
bridge managers of the same team will then be able to reuse
these rules to reduce the irrelevant information and concentrate
on the relevant bridges.

This scenario shows how a user could gather information dur-
ing visual exploration and further update (externalization) and
share his knowledge discoveries with other co-workers (collab-
oration).

5. Future Work and Discussion

Although the four knowledge processes are shown to be ef-
fective in transferring and storing knowledge between multiple
users in our bridge visualization system, there are still several
remaining issues that need to be solved, including one funda-
mental challenge on how to verify and validate newly inserted
knowledge. This challenge, through our discussion with do-
main experts, has its significance in determining the usefulness
of a knowledge-assisted visualization system.
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(a) (b)

Figure 9: (a) A large group of unknown data is shown in the temporal view, which lead to the search of its cause. (b) Visualization views indicating that these are
Railroad bridges.

As mentioned in the Combination process, if new knowl-
edge is not carefully validated, inserting unrelated or incorrect
knowledge could potentially degrade the value of the ontolog-
ical knowledge structure. However, verifying and validating
diverse human knowledge is difficult in nature. Due to individ-
ual experiences and understanding, different experts have their
own ways of representing and describing knowledge. In gen-
eral, there are three potential issues in inserting newly created
knowledge into an existing knowledge database: duplicated,
partial-overlapped and conflicted knowledge.

• Duplicated knowledge is often created when different ex-
perts share the same discoveries without realizing that one
already exists. For example, bridge managers often ap-
ply the rule that regulates bridges with sufficiency-rating
value below 50 and super-structure rating below 6 in order
to quickly decide which bridges require further examina-
tion. However, depending on the size of the knowledge
database, an expert user might not know that this rule al-
ready exists and creates an identical one (but perhaps rep-
resented slightly differently using a different grammar or
language).

• Partially overlapped knowledge in the knowledge database
represents rules that are mostly similar but contains sub-
tle yet important differences. As in the previous example,
some bridge managers may like to add the substructure
value into consideration. Since it is not simple to decide if
the newly added rules should be inserted or merged with
the existing one, verifying this type of relationship is diffi-
cult. One conservative approach could be to provide multi-
ple copies of the overlapped rules and group them together
for individual users to choose from.

• Conflicted knowledge occurs when existing knowledge
differs from newly created knowledge due to perhaps new
protocols or regulations. Unfortunately, without the su-
pervision of domain experts, most systems cannot effec-
tively identify and resolve such conflicts. This is particu-
larly challenging when the existing knowledge is still valid

(and should be kept in the knowledge-base) for decisions
made in the past or under specialized circumstances (e.g.,
a drastic change in the budget). Due to the multiple pos-
sible causes of conflicted knowledge, organizing them is
arguably the most difficult and least understood.

Understanding each of these relationships is imperative for
maintaining the validity and integrity of a knowledge database
that is used in real decision-making environments. At present
time, all three scenarios are handled by domain experts man-
ually. However, in Knowledge Engineering literature, re-
searchers proposed and designed several verification and val-
idation (V&V) techniques and tools [20]. Some of them sup-
port the ability to automatically verifying and validating un-
derlying knowledge. But without a clear understanding of do-
main knowledge, most automatic techniques and tools are not
always reliable. In knowledge-assisted visualization, it remains
an open research area for us to create a semi-automated knowl-
edge management system for organizing and storing diverse
knowledge and rules in the same knowledge database.

6. Conclusion

In this paper, we first propose our definition of knowledge in
the context of visual analytics and further differentiate knowl-
edge into two types, tacit and explicit. With the differentiation,
we then formulated four knowledge conversion processes in
knowledge-assisted visualization: internalization, externaliza-
tion, collaboration, and combination. Based on the definition
of knowledge and the four knowledge processes, we designed
a visual analytics system for bridge management with the sup-
port from US Department of Transportation. By connecting
to an ontological knowledge source, our visual analytics sys-
tem allows users to interactively analyze the data with access to
the expert’s domain knowledge. We demonstrate through this
bridge management visualization system that the four knowl-
edge conversion processes are feasible and applicable to visual-
ization systems and should be considered together when design-
ing knowledge-assisted visualizations that incorporate domain
expert knowledge.
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