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ABSTRACT

An interactive visualization system, STREAMIT, enables users to
explore text streams on-the-fly without prior knowledge of the data.
It incorporates incoming documents from a continuous source into
existing visualization context with automatic grouping and sepa-
ration based on document similarities. STREAMIT supports in-
teractive exploration with good scalability: First, keyword impor-
tance is adjustable on-the-fly for preferred clustering effects from
varying interests. Second, topic modeling is used to represent the
documents with higher level semantic meanings. Third, document
clusters are generated to promote better understanding. The system
performance is optimized to achieve instantaneous animated visual-
ization even for a very large data collection. STREAMIT provides
a powerful user interface for in-depth data analysis. Case studies
are presented to demonstrate the effectiveness of STREAMIT.

1 INTRODUCTION

Advanced technologies (e.g. mobile phone and internet) have
greatly increased the quantity and accessibility of text documents
in human society. Massive documents are generated at a significant
speed, e.g., from daily, hourly, or minutely emails, messages, webs,
broadcasts, and TVs. They have introduced an urgent need for effi-
cient storage, processing, and analysis of such constantly growing
text collections. Recently, visualization tools have been success-
fully applied in processing and analyzing text data.

A stream text collection constantly evolves as new documents
are continuously generated and published. Unlike traditional text
database, the quantity and representation (e.g. keywords or topics)
of the documents are not known in advance. Visual exploration
of real text streams is a challenging task. First, text streams con-
tinuously evolve. Visualization aids should be provided to trace
the temporal evolution of existing topics, monitor emerging topics,
and examine the relationships between them. Second, a visualiza-
tion system should process a text stream without pre-scanning the
whole stream or assuming a priori knowledge. Third, a visualiza-
tion system should allow users to interactively change their infor-
mation seeking focus at any time and receive immediate feedback.
Such interactivity is a decisive factor for a visual analytic system in
real applications where domain users usually do not know the text
streams in advance. Fourth, a visualization system should scale to
large volumes of text streams and respond to their evolution in real
time.

In this paper, we design a novel dynamic visualization system,
named STREAMIT, for exploratory applications of text streams.
The paper is expanded from our previous work [2] by introducing
topic modeling, automatic cluster discovery, and enhanced visual-
izations. The system is based on a dynamic force-directed simula-
tion into which documents are continuously inserted. Each docu-

ment is represented as a mass particle that moves inside a 2D vi-
sualization domain. A potential energy is defined by pairwise text
similarity between documents. Minimizing the total potential en-
ergy of the system moves similar document particles closer and
drives away dissimilar ones, which are achieved by attractive and
repulsive forces between particles. Consequently, an equilibrium
state of the particles visually depicts the data clusters and outliers
at a particular moment. The system automatically adjusts its vi-
sual output with newly injected document particles. The dynamic
procedure of this change is critical for reducing change blindness
when new patterns emerge. This system has the following features
to enable effective text stream visualization:

Continual evolvement: This physical model is well-suited to vi-
sualize text streams for continuous depiction and analysis of grow-
ing document collections, where the dynamic nature is simulated
through the dynamic behavior of particles. Text documents enter
the system at any time and automatically join clusters of related
collections. In the meantime, the particles already inside the system
travel continuously under the impact of new particles. The visual
structures hence gradually evolve without abrupt changes that break
the mental picture users already formed. Erratic motion of particu-
lar particles (e.g., moving from one cluster to another cluster) may
reveal outliers or significant new trends. This is advantageous to ex-
isting static or time-window based visualization approaches, which
depict only stationary data patterns or the sporadic transitions be-
tween these patterns.

Dynamic processing: Text documents are typically represented
and manipulated through the vector of keywords. Existing meth-
ods usually pre-calculate similarity between documents from their
predefined constituent keywords. Instead, we develop dynamic
keyword vectors that upgrade adaptively from the incoming docu-
ments. Essentially, our system does not require a scan of the whole
collection before visualization. The visualization parameters and
functions can be managed with respect to the temporal context.

Interactive exploration: We propose a Dynamic Keyword Impor-
tance that presents the significance of a keyword at a certain time.
It reflects user interest so that similarity is updated on-the-fly, and
consequently the visualization artifacts. For instance, keywords
with increasing importance will make documents having those key-
words aggregated closer.

Scalability: Our system works well with topic modeling tech-
niques, such as the LDA model [3]. They summarize the documents
using a set of probabilistic topics, while the topics are described by
a probability distribution of keywords. By using topics, we reduce
the operating space from a large number of keywords to a much
lower dimensional feature space, which can be easily used to in-
vestigate thematic variation. In addition, we generate clusters on-
the-fly from the force-based results, where a Delaunay triangulation
combined with graph cut are applied by directly utilizing geomet-
ric features. This dynamic clustering function enables easy visu-
alization of cluster growth, split, and merge for better knowledge
discovery.

Performance optimization: We optimize our method by introduc-



ing a similarity grid that helps new particles quickly reach their
preferred location. Moreover, our particle system is inherently par-
allel for direct GPU acceleration, which achieves fast speed for a
very large number of documents.

2 RELATED WORK

Many text visualization systems use similarity-based projection to
help users get insights from large text collections. IN-SPIRE [11]
uses multidimensional scaling (MDS) to map documents with simi-
lar contents close to each other, and thus form “galaxies” or “moun-
tains” in the displays. A point placement approach is proposed in
[9] to build a hierarchy of the documents and project them as cir-
cles. Our approach is different in that it uses a dynamic similarity-
based projection system to depict text streams.

Related to our aim to handle continuous incoming text streams,
TextPool [1] produces a visual summary that clusters related terms
as a dynamic textual collage. Unlike our method, it visualizes very
recent stream content as a partially connected graph, which is “not
for analyzing any significant portion of stream history”. Besides,
the graph represents salient terms of the stream instead of the doc-
uments. Wong et al. [12] dynamically visualize stream data in a
moving time window using incremental data fusion. Newly arrived
data items are inserted into existing layout when the error of the
similarity placement is smaller than a given threshold. Once the
threshold is exceeded, the whole layout is recalculated. Interac-
tive exploration and user control are not addressed in [12]. Even-
triver [8] processes incoming documents on the fly using a dynamic
keyword processing and an incremental text clustering algorithm
where individual documents are not visible from the overview of
the stream. However, in our approach, individual documents can be
examined within the global temporal and similarity context. Het-
zler et al. [6] visualize text collections in a 2D projection space
with fresh and stale documents visually distinguished. They apply
IN-SPIRE [11] to a dynamic document flow. When new documents
are added, the existing vocabulary content is adjusted and the visual
result is regenerated. However, the method does not show the ani-
mated transition of the view. In comparison, our system reveals the
evolvement of the stream in fine details with controllable transient
animations.

Our algorithm employs Force-Directed Placement (FDP) for vi-
sualizing dynamic documents. FDP [5] has O(N3) complexity
which urges researchers to improve its computational performance.
Restrictions are imposed on the force calculations to a subset of the
entire data, which could possibly lead to misleading approximated
results. Unlike these methods working on static high-dimensional
data, our approach is among the first efforts to visualize text streams
using force-directed placement. Furthermore, to make correct dy-
namic behavior, we avoid reducing force computation scope on
only a portion of the particles. Instead, we use a spatial division
of the visualization domain for fast locating the appropriate initial
position of particles. More importantly, we fully utilize the paral-
lel nature of the simulation algorithm by GPU acceleration which
achieves a dramatic speedup.

3 SYSTEM OVERVIEW

The infrastructure of STREAMIT is illustrated in Figure 1. Contin-
uously incoming text documents are visually presented to users in a
dynamic 2D display. Users can explore the documents and clusters
based on keywords or topics in the dynamic display. Furthermore,
we employ tag clouds and present a novel spiral view to visualize
and analyze clusters in a global view. The semantics of the clusters
are examined in keyword clouds, and the titles of individual docu-
ments are displayed as labels. Users can discover emerging patterns
on-line by monitoring the real-time display. They can also examine
the temporal evolution of historical data through animations that
playback the stream evolvement over time. A set of interactions are
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Figure 1: STREAMIT system overview.

provided for users to manipulate the visual structure of the display
on-the-fly such as through varying keyword importance.

4 FORCE-BASED DYNAMIC SYSTEM

4.1 Particle Potential

Documents are presented as mass particles inside the 2D domain
with their velocity and acceleration following Newton’s law of mo-
tion. Each pair of particles has a potential energy Φi j:

Φi j = α(|li − l j|− li j)
2, (1)

where α is a control constant, and li and l j are the positions of two
document particles pi and p j, respectively. While |li− l j| represents
the Euclidian distance of the two particles, and li j is their ideal dis-
tance computed from similarity. Hence, this pair potential function
models the deviation of the two particles from their ideal locations,
which is achieved at zero potential.

4.2 Particle Similarity

An optimal layout is determined by the definition of li j. li j is ob-
tained from the pairwise similarity computed from their keywords
as:

li j = 1−δ (pi, p j), (2)

where δ (pi, p j) ∈ [0,1] is the cosine similarity between document
particles pi and p j. With this formula, those documents with large
similarity will have a smaller ideal distance, li j, and move closer
for clustering in the visualization.

4.3 Force-directed Model

A global potential function is the sum of the pairwise energy:

V (l1, ..., lN) = ∑
i

∑
j>i

Φi j, (3)

where N is the particle number, and l1, ..., lN represent the current
locations of these particles. The potential of the system is min-
imized to an equilibrium state that provides a global optimized
placement of these particles. A numerical simulation is performed
to achieve the optimization by minimizing the global potential with
a sequence of simulation time steps. At each time step, the mini-
mization leads to forces acting on each particle:

Fi =−∇li
V (l1, ..., lN), (4)

which attracts or repulses particles from each other. From Newton’s
law:

Fi = miai (5)

where mi is the mass. We compute the particle acceleration as:

ai =
2∑ j α(|li − l j|− li j)

mi
, (6)



which is used to update the location of the particle, pi, at each sim-
ulation time step. While every particle no longer moves (in numer-
ical computing, the displacement smaller than a threshold ξ ), the
system is optimized to its best visual layout.

Algorithm 1 Dynamic Simulation Algorithm

Set the maximum displacement D as a large value
while D > ξ do

for i = 0 to N - 1 do
for j = i+1 to N do

Fi+= 2∗α(|li − l j|− li j)
end for

end for
for i = 0 to N - 1 do

ai = Fi/mi

update the position of this particle
update maximum displacement D of all particles

end for
end while

Algorithm 1 describes the basic computing procedure, where we
assume every particle has the same unit mass. The constant α is
an empirical parameter used to control the force (α = 0.01 in the
case studies), so that the numerical simulation is stable, i.e., all the
particles will not totally move out of the 2D domain or be squeezed
to the center of this domain.

5 ADVANCED FEATURES FOR INTERACTIVE EXPLORATION

AND SCALABILITY

The evolving force-based system successfully generates and
presents document clusters, as well as outliers, for dynamic visu-
alization. It automatically creates temporal visual output from con-
tinuously inserted documents. We further develop techniques for
advanced data exploration.

5.1 Dynamic Keyword Importance

Keywords are vital words that frequently occur in a document. The
similarity δ (pi, p j) is typically computed by predefined formula,
e.g. cosine similarity, from the keyword vector of documents pi

and p j . However, stream text collections usually span a long period
of time. For a real world stream, one keyword might excessively ap-
pear for a period of time and then fade out, while another one might
frequently pop up during the entire period of time. While users
typically do not have knowledge about the incoming documents,
they will change their focus of interest along the stream evolve-
ment. Consequently, the definition and computation of similarity
should instead be a function of time and adjusted by user input.

To address the challenge, we propose Dynamic Keyword Impor-
tance in addition to the computation of δ (pi, p j), which interac-
tively enables the users to manipulate the significance of keywords
at any time. The classic cosine similarity can be improved as:

δ (pi, p j) =
∑K

k=1(wikIk)(w jkIk)
√

∑K
k=1(wikIk)2.∑n

k=1(w jkIk)2
(7)

where Ik is the importance of keyword k, K is the number of key-
words, and wik is the weight of keyword k in the document pi. The
classic cosine similarity can be considered as a special case where
Ik = 1. All the K weights form the keyword vector of this doc-
ument. The length of the current vector is dynamically updated,
so that our system can handle data streams not prerecorded. The
weight of keywords is calculated as:

wik = Oik ∗ log2

N

nk

(8)

(a) Particles (b) Triangulation (c) Graph cut

Figure 2: Cluster generation with triangulation and graph cut.

where Oik is the occurrence of keyword k inside the document i, N
is the total number of documents, and nk is the number of docu-
ments that contain the keyword k inside N. The inverse document

frequency factor N
nk

favors the keywords concentrated in a few doc-

uments of a collection, in comparison to the keywords with similar
frequency but are prevalent in the whole collection [10].

Users can freely modify the keyword importance through the vi-
sual interface, where frequent keywords are presented in an ordered
list. Furthermore, the importance can also be determined automati-
cally by the system as follows (See Section 7.1):

Ik = a∗Ok +b∗ (tek − tsk)+c∗nk . (9)

Here, Ok is the occurrence of keyword k in the current existing
documents, tek is the last time it appears, and tsk is the first time it
appears. (tek−tsk) makes the importance larger for aged keywords.
nk makes the importance larger for the keywords appearing in a
large number of different documents. Here, a, b, and c are positive
constants satisfying a+ b+ c = 1. They are selected to determine
how the three factors are preferred. In our experiments, we use a =
0.3, b = 0.3, and c = 0.4. Users indeed can define their preferred
keyword importance in a variety of functions for different purposes.

5.2 Topic-based Visualization

A document is usually represented as a vector of keywords. The ca-
pability of STREAMIT in revealing clusters may be impaired when
the dimensionality of the keyword space is too high, due to the lack
of data separation in such a high dimensional space. Recent topic
modeling techniques, such as the LDA (Latent Dirichlet Allocation)
model [3], reduce the keyword-document space to a much lower
feature space that is not only intuitive to interpret, but also captures
most of the variance in the corpus. In particular, topic modeling
automatically represents the documents using a set of probabilistic
topics. The topics are described by a probability distribution over
keywords.

We use the LDA model [3] to extract topics from a large docu-
ment archive that is highly related to the text stream to be visual-
ized, such as its historical archives. Each extracted topic is associ-
ated with a set of keywords highly related to the stream. During the
ongoing visualization, STREAMIT dynamically examines whether
an incoming document contains the extracted topics according to
its keywords. The document is then represented by a vector of
probable weights of topics it contains. All the aforementioned cal-
culation, visualization, and interactions based on keywords can be
applied to the topics. The benefits are significant: since the number
of topics is much less than the number of keywords, the documents
are better clustered; since the topics are at a higher semantic level
than keywords, it is easier for users to understand the clusters gen-
erated (see Section 7.3). For example, interdisciplinary proposals
that cover multiple topics, which are difficult to be identified in the
keyword-based approach, can be easily detected in the topic based
approach.



5.3 Dynamic Clustering

The distribution of document particles in the 2D space allows users
to visually identify clusters of documents with similar semantics.
However, based on individual particles, it is difficult to conduct
cluster-level operations, such as selecting all documents in a cluster
and examining the semantics of a cluster. To address this prob-
lem, STREAMIT automatically discovers clusters from the evolv-
ing geometric layouts, so that they can be explicitly presented and
operated through the visual interface. Moreover, the visualization
can display a text stream in the cluster level to reduce clutter and
enhance scalability.

5.3.1 Cluster Generation

At a moment, a group of document particles can be considered
forming a semantic cluster with the following definition:
Definition: If particles s and t are in a cluster, there must at least
exist a path between s and t, which connects a sequence of particles
s, p0, p1, ..., pc, t with pairwise line segment, s → p0, p0 → p1,
..., pc → t. The maximum length of all the connected segments is
smaller than a predefined threshold ζ .
Here we use the single linkage rule in defining clusters, which con-
siders connected components (with respect to ζ ) as one cluster. We
discover such clusters directly from the 2D geometric layout. In
particular, a typical agglomerative algorithm can be applied to par-
tition all particles into clusters: starting with N particles forming
N clusters, repeatedly merging two clusters according to the dis-
tance between the nearest neighbors of them. This straightforward
approach has O(N2) complexity and does not utilize the geomet-
ric layout of the particles. A drawback of this approach is that the
resultant clusters are only represented by individual particles and
no topological information is provided. Since an effective visual-
ization should show the spatial areas of these clusters distinctly, a
computational geometry method has to be invoked to create a sim-
ple polygon from the particles of each cluster. To address this prob-
lem, we propose to use Delaunay triangulation and graph cut in
generating clusters. A similar approach has been used in spatial
data mining [7]. The algorithm is shown in Algorithm 2. The graph
cut partitions the particles into disjoint sets (i.e. connected compo-
nents) that represent the semantic clusters. Figure 2 illustrates the
cluster generation process.

Algorithm 2 Creating Clusters From Triangulation

Step 1: Apply Delaunay triangulation for all particles in the sys-
tem;
Step 2: In the created graph (i.e., the triangle mesh), cut the edges
whose length is larger than ζ .

Our method has the complexity of O(NlogN)+O(E) for N par-
ticles, with O(NlogN) for Delaunay triangulation and O(E) for
browsing all E edges in graph cut. Since in Delaunay triangulation
the maximal number of edges is 3N −6, O(E)∼ O(N). Therefore,
our method achieves O(NlogN), better than the agglomerative al-
gorithm.

5.3.2 Cluster Evolution

The created clusters merge and split over time when new documents
arrive or keyword importance is changed. Such evolution of the
clusters are critical for knowledge discovery and should be tracked
and visualized. Therefore, we propose a method to track cluster
evolution. In particular, each cluster is given a distinct ID value for
identification and each particle carries the ID of its cluster. To man-
age the cluster identification in a context-aware way, we compute a
preferred ID list for each new cluster. The list ranks the IDs carried
by all the particles inside this cluster before the update, according
to the number of the particles with the same ID. The largest new

cluster is first assigned the top ID in its list. Then we iteratively
choose a cluster according to the cluster size (i.e., the number of
particles). Each cluster is given one ID following the order of its
preferred list, if the ID has not been assigned to other clusters. If
all ID choices are occupied, this cluster is given a new ID that did
not appear in the previous step. In this way, large clusters have the
tendency to keep their contextual information from previous time.

Each ID is associated with a color, which is assigned to the clus-
ter with that ID (see Section 6). To avoid color clutter, we set a
threshold K of the number of significant clusters. The largest K
clusters are considered significant and displayed with background
halos in the colors assigned to them. All the other clusters are dis-
played without background halos (see Figure 6).

6 VISUALIZATION AND INTERACTION

6.1 Visualization

STREAMIT has a main window, an animation control panel, a key-
word/topic table, and a set of document tables (see Figure 3):
Main Window: The main window (top left of Figure 3) visually
presents the movement of the particles through an animated 2D dis-
play. Each document particle is represented by a pie. The similari-
ties among the documents are reflected by the closeness of the posi-
tions. The pie position dynamically changes to reveal the temporal
evolution of the stream. A grey scale is used to indicate the age of
the documents, namely the older a document is, the darker its color
(see Figure 3). The size of pies can be proportionally mapped to an
attribute of the documents. Moreover, the size and transparency of
pies can be adjusted to lessen any clutter that might be introduced
as the number of documents grows. Keywords of interest are repre-
sented by pie sectors and their colors can by assigned by users.

Animation Control Panel: STREAMIT buffers recent documents
falling into a moving time window (named the buffer window) that
is larger than the moving window of currently displayed documents.
Users can playback the animation within the buffer window to ex-
amine the temporal and semantic evolution of the buffered stream
in detail. Users can change the size of the buffer window to explore
a longer or shorter time period. An animation control panel is used
to control the playback (see Figure 3(3)). The users can move the
slider to start the animation from any moment and they can pause
the display to examine a moment of the stream or change parame-
ters such as keyword importance.
Keyword and Topic Tables: STREAMIT provides keyword infor-
mation in a keyword table which is updated dynamically (see Figure
3(1)). It lists all the keywords characterizing the documents cur-
rently displayed, their frequencies, importance, and colors. Users
can sort this table to find frequent and important keywords. They
can also change the keyword importance or colors. When topic
modeling is used, topics will replace keywords in the table and the
significant keywords describing each topic will be represented.

Document Tables: Users can click a tab to show one of four doc-
ument tables (see Figure 3(2)). They display the titles, authors,
and timestamps of the following documents respectively: (1) all
buffered documents; (2) all documents that are displayed in the
main window; (3) documents selected by users; and (4) document
clusters generated by the system or created by users. The users can
sort the documents by their authors or timestamps. They can also
click a title to reach the full text of a document.

6.2 Labeling

Labels revealing semantic contents of a collection are desired in
text visualization systems. Titles of the documents contain rich se-
mantic information in a condensed manner and thus STREAMIT
uses titles as labels of the documents. Severe clutter can be gen-
erated if titles of all documents are displayed. We develop a novel
labeling algorithm to provide the most recent semantic information
with user-controllable clutter levels. In particular, documents are



Figure 3: STREAMIT interface. The left part is the visualization view of text streams, and the right part includes keyword table, document tables
and parameter controls.

divided into groups according to a dissimilarity threshold. Within
each group, the dissimilarities among the documents are less than
the threshold. Only one document, namely the most recently ar-
rived document, is labeled in each group. By interactively chang-
ing the dissimilarity threshold, users can control the label clutter. A
newly arrived document is either assigned to an existing group or
forms a new group. Thus no labels will be changed except the label
of the group affected. This is an important feature to keep the tem-
poral consistency among adjacent displays. The newest injected
document will always be labeled, which is usually desired in text
stream visualization. Figure 3 shows the automatic labeling results.
The newest injected document and its label are highlighted by red
(see Figure3(4)) while the selected documents and their labels are
highlighted by orange (see Figure3(5)).

Labels and particles may overlap when a large number of doc-
uments are displayed. STREAMIT displays labels on the top of
particles and allows users to interactively change the transparency
of their background. An opaque background makes the labels easy
to read and semi-transparent background (Figure 3) allows users to
examine particles hidden by the labels. Users can turn off all the
labels and they can also turn on/off an individual label by clicking
it.

6.3 Visual Representation of Clusters

After the documents are automatically divided into clusters (Section
5.3), their outlines are represented by the triangle meshes. Back-
ground halos are displayed in the mesh area for significant clusters
in the assigned colors. Figures 6(A)-(B) show how the background
haloes allow users to track the clusters during the dynamic visual-
ization. The system also allows users to explore clusters in a less
cluttered spiral view where their temporal trends can be examined
[4]. Figure 6(C) shows the spiral view of 12 clusters from a NSF
award collection. Each spiral is a time axis located at the center of

a cluster in the original 2D display. The documents of the cluster,
displayed as pie charts, are mapped to the spiral according to their
time stamps. Users can thus learn the temporal trends of the cluster
by observing the distribution of the pie charts on the spiral. In topic
modeling view, pies are colored with two colors (red and yellow in
Figure 6(C)) to indicate how documents are related to the general
topics of the cluster. The ratio between the red area and the yellow
area in a pie indicates the number of the most shared keywords (or
topics) in the cluster a document contains, against other keywords
(or topics) in this document.

Users can quickly examine an unknown cluster through a key-
word cloud triggered by selecting the cluster. It displays the most
significant semantic information of the cluster, namely the titles of
the most recently arrived documents and the keywords with the
highest TF-IDF (Term Frequency-Inverse Document Frequency)
weights. Figures 7(A)-(B) show the keyword clouds of two clusters,
respectively. The keywords are displayed below the titles, whose
sizes indicate their weights. Users can interactively set the colors
of the background, titles, and keywords. By clicking a keyword in
a cloud, users can select all documents with this keyword from the
cluster.

6.4 Interaction

STREAMIT allows users to interactively manipulate the visualiza-
tion according to varying interests. It also allows users to search,
track, and examine documents.

6.4.1 2D Display Manipulation

Adjusting Keyword Importance: Users can adjust the keyword
importance to emphasize particular contents of interest and receive
immediate response (Figure 4).

Grouping and Tracking Documents: User-selected groups or au-
tomatically computed clusters can be highlighted by halos in user



assigned colors, which promotes easy document tracking in the dy-
namic display. Figure 3(5) and (6) show two groups in orange and
blue, respectively.

Browsing and Tracking Keywords: Users can assign colors to
keywords of interest to track them. A document pie conveys the
colors of traced keywords. The size of a color section is propor-
tional to the weight of the keyword in the document. Users can
investigate keyword and document relations and track the evolution
of relevant topics in this way (Figure 4). The users can also click a
keyword of interest in the keyword table. All documents containing
the clicked keywords are highlighted by halos. The users can sweep
the keyword table in this way to find keywords of interest.

Setting Moving Windows: Users can interactively change the
length of the moving window, i.e., investigating period, of currently
displayed documents.

6.4.2 Document Selection

Manual Selection: Users can manually select documents from the
document tables, or use a rubber band selection by dragging the
mouse. The selected documents will be highlighted by halos (Fig-
ure 3). Their information will also be displayed in the selected
document table (Figure 3(2)).

Example-based Selection: Users can use the current selection as
examples and select documents that are within a distance range to
them. The range is easily controlled to select similar documents.

Keyword-based Selection: Users can select multiple keywords
from the keyword table (see Figure 3(1)), and then the related docu-
ments are automatically selected and highlighted (see Figure 3(5)).
Cluster-based Selection: Users can click the background halo of a
cluster or its spiral to select all documents in it. They can also click
a keyword in a keyword cloud to select all documents containing
the keyword in the cluster.

Shoebox: In the dynamic environment, users may want to focus on
the temporal evolution and examine the selected documents later.
They can easily send the selected documents into a shoebox, which
can be examined in full text later.

7 CASE STUDIES

We present three case studies in this section. Documents in pre-
recorded collections are sorted by their time stamps and fed into
STREAMIT with an interval of a few seconds to simulate a fast
evolving text stream. Topic modeling and dynamic clustering are
demonstrated in the third case study.

7.1 Exploring Barack Obama News

We explore a text stream of 230 New York Times news about
Barack Obama reported between Jul. 19 and Sep. 18, 2010. The
keywords are given tags that come with the news. In each docu-
ment, the occurrences of the keywords are assigned to a value of
one. The buffer window covers the whole stream. Keyword im-
portance is automatically assigned by the algorithm described in
Equation 9.

Figure 4(A) shows the display on Aug.13, 2010, where 136 news
articles are represented. On Aug.13, 2010, we notice that keywords
such as “Politics and Government”, “International Relations”, “De-
fences Military”, and “Terrorism” have high frequency values ac-
cording to the keyword table. We assign them distinct colors to
track the articles characterized by them as shown in Figure 4(A).

We increase the importance of the keyword “International Rela-
tions”. Figure 4(B) shows that the articles containing this keyword
are attracted closer than in Figure 4(A). We easily select them us-
ing a rubber band selection and find in the shoebox that they contain
keywords such as “China”, “Terrorism” and “Afghanistan War”.

We want to focus on “Afghanistan War” and “Terrorism” since
most of these news articles are recently inserted (with lighter dark-
ness). We click the keyword “Afghanistan War” to select the re-

Table 1: A table of topics.
Topic Descriptive Keywords

Topic 2 data;mine;cluster;graph;biology;analysis;discovery

Topic 6 image; scene; model; recognition; language; shape; speech

Topic 12 biological, protein; genom; search; gene; sequence; patent

Topic 13 video; motion; asl; 3D; camera; sign; dance

Topic 15 image; speech; haptic; display; impair; auditory; graphic

Topic 16 query; database; data; xml; stream; edu

Topic 19 data; workflow; privacy; management; web; metadata

lated articles and create a new group named “war” for them. We
also highlight the group in pink halos (Figure 4(B-2)). We create
another group for “Terrorism” in the same way and highlight it in
orange halos (Figure 4(B-3)). Then we continue to play the anima-
tion and track the evolution of these groups. Figure 4(C) shows the
visualization when all the news articles are displayed. We notice
that the cluster shown in Figure 4(B-3) gets much bigger. We also
notice that there is a recent news article (Figure 4(C-4)) that stands
in-between it and the cluster shown in Figure 4(B-2). It is related to
both “Afghanistan War” and “Terrorism” (see Figure 4(C-4)). We
select this article and read it in full detail by clicking the circle.

7.2 Exploring NSF Award Abstracts

We explore 1000 National Science Foundation (NSF) IIS award ab-
stracts funded between Mar. 2000 and Aug. 2003 as a text stream.
The time-varying funding behavior is critical in understanding re-
search and administrative trends. Each document was automatically
characterized by a set of keywords and its corresponding pie size is
proportional to the funding amount of the project.

Figure 5 shows several snapshots of the dynamic visualization.
Figures 5(A) and (B) show the stream in two adjacent months. We
notice that multiple large projects started from the second month.
We pause the animation, select items of interest, and then examine
them in detail. From the shoebox, we observe that the keywords
“Management” and “Database” appear in many of these project ab-
stracts. We highlight the keyword “Management” in red and the
keyword “Database” in green. We also increase their importance
values so that we can observe the relevant abstracts easier (Figure
5(B)). Although some abstracts contain both keywords (Figure 5(B-
1)), there are many other abstracts that contain only one of them.
We pull back the animation to the previous month (Figure 5(A)) to
examine the temporal evolution of these topics. When the stream
further evolves, we observe that IIS continuously supported projects
with these keywords (Figure 5(C)).

In Figure 5(C), we highlight all projects containing the keyword
“sensor” by halos. The node with a halo indicated by the arrow
(Figure 5(C-2)) is a potential transformative proposal since it is far
away from the other projects with halos. We examine this abstract
in detail and find that it is a project about just-in-time information
retrieval on wearable computers.

7.3 Exploring NSF Award Abstract with Topic Modeling
and Dynamic Clustering

We explore the same NSF data with the topic modeling and dy-
namic clustering. It reveals how these features significantly in-
crease the scalability of STREAMIT. Figure 6(A) can be compared
to Figure 5(B) to demonstrate the difference between the topic-
based visualization and keyword-based visualization. They show
the same set of documents at the same month.

It can be seen that a large number of documents that seem not
related to other documents actually belong to clusters in the higher
semantic level. Table 1 shows a list of the involved topics in Figure
6(A). Topics 16 (red pie sections in Figure 6(A)) and 19 (green pie
sections in Figure 6(A)) contain the keywords “Database” (red pie
sections in Figure 5(B)) and “Management” (green pie sections in
Figure 5(B)), respectively. The semantics of the related clusters



Figure 4: Barack Obama news. (A) Aug. 13, 2010, 136 news articles; (B) after increasing importance of “International Relations”; (C) Sep. 18,
2010, 230 news articles. Keyword colors: “Politics” - green, “International Relations” - red, “Terrorism” - yellow, and “Defense and Military” - blue.

Figure 5: NSF award collections. (A) Aug. 1, 2000, 95 research projects; (B) Sep. 1, 2000, 172 research projects; (C) Mar. 15, 2002, 672
research projects. Keyword colors: “Management” - green, “Database” - red.

is easier to understand in the topic-based visualization than in the
keyword-based visualization.

Figure 6(A)-(B) demonstrate dynamic cluster evolution. In Fig-
ure 6(A), we can see a handful of clusters. The cluster (A)-(1)
mainly about Topic 15 and the cluster (A)-(2) mainly about Topic
6 merge into one larger cluster (B)-(3). In Figure 6(B), we observe
two newly formed clusters: the cluster (B)-(4) mainly about Topic
13 and the cluster (B)-(5) mainly about Topic 12. The visual ef-
fects help users identify critical data variation. Users can discover
semantic details of the evolving clusters by examining their key-
word clouds. Figure 7 shows the keyword clouds for the two new
clusters, namely (B)-(4) and (B)-(5), respectively.

Figure 6(C) displays the spiral view of clusters at the same mo-
ment with Figure 6(B). Each spiral represents a cluster: (C)-(6)
represents (B)-(4) and (C)-(7) represents (B)-(5). Two or three most
significant topic names of a cluster are displayed below its spiral.
Users can also examine details from the keyword clouds. Each pie
on a spiral represents a document. The red area of a pie indicates
how the document is related to this cluster’s major theme. In Figure
6(C), we can discover that large pies (i.e., large projects with fund-
ing amount over 1 million project) typically have small red area,
indicating that they are probably interdisciplinary projects. On the
contrary, small projects usually involve fewer topics and agree more

with the clusters.

8 PERFORMANCE OPTIMIZATION

Algorithm 1 is an O(N2) approach and Algorithm 2 is an O(NlogN)
approach. We seek to optimize the performance of our system by
applying parallel computing and similarity grid to improve its scal-
ability for large data sets.

8.1 GPU Acceleration

Our computational algorithm is inherently parallel at each simula-
tion step. Hence, we accelerate the computation on graphics hard-
ware with CUDA implementation similar to an N-body problem 1.
N particles execute their force-placement algorithm simultaneously
as individual threads distributed to a grid of CUDA blocks. Each
thread accesses and updates the particle’s position from the infor-
mation of last step loaded into the shared memory of the blocks.

As shown in Table 2, we achieved very good performance on an
NVidia NVS 295 GPU with 2GB memory for large scale data sets,
compared with an Intel Core2 1.8GHz CPU with 2GB RAM. We
conducted a few experiments using text streams from the New York
Times news. For each frame, the simulation ran multiple steps with

1htt p.developer.nvidia.com/GPUGems3/gpugems3 ch31.html



Figure 6: NSF award data with topic modeling. (A) Sep. 1, 2000, 172 research projects. (B) Sep. 15, 2001, 330 research projects. (C) Spiral
view of (B). Topic color: topic 16 - red. Topic 19 - green.

Table 2: STREAMIT performance on CPU and GPU (in milliseconds) with selected text streams of New York Times news
Document Number of Documents Number of Keywords Ave. Simulation Time Per Frame GPU/CPU Maximum Simulation Time Avg. of Simulation Steps

Time Period in System in System CPU (ms) GPU (ms) Speedup CPU (ms) GPU (ms) Per Frame

Feb.13 - Aug.18, 2010 6157 5057 540 34 17.9 4350 230 173

Aug.1 - Oct.31, 2006 7100 1059 620 41 15.1 9070 480 177

Jul.1 - Aug.31, 2010 10205 2036 986 53 15.9 11030 610 200

Synthetic Data set 15000 2000 1020 65 15.7 13070 682 196

Figure 7: Keyword clouds. (A) For cluster of Fig. 6(B)-(4); (B) For
cluster of Fig. 6(B)-(5)

the preset minimum threshold ξ at 10−4. On average, real time
running performance was achieved by the GPU acceleration at a
frame rate around 25-30 frames per second. It was above 15 times
faster than the CPU version. The maximum simulation time after
each document insertion on the GPU was less than a second, which
was sufficiently fast considering the relatively slower response time
for human perception and analysis of the visualization update. In
addition, we tested STREAMIT on a synthetic data set with around
15,000 documents and 2,000 keywords. The results showed that
our system worked well for such a large text stream on the GPU.

Table 3 reports the GPU/CPU performance of triangulation-
based dynamic clustering. With GPU acceleration, the cluster gen-
eration does not impose much extra overhead on the system.

Table 3: Dynamic clustering performance (in milliseconds)
Number of Documents Ave. Time Per Frame Max.Time Per Frame

in System GPU (ms) CPU (ms) GPU (ms) CPU (ms)

6157 317 1270 334 2875

7100 324 1546 334 3484

10205 330 2544 341 5625

15000 332 4247 356 9423

Table 4: Performance optimization obtained by employing similarity
grids on a data set of 7100 documents

Similarity Grid Size Average Number of Simulation Steps

None 225

20×20 207

50×50 177

100×100 182

200×200 186

8.2 Similarity Grid

The initial positions of document particles significantly affect the
computational cost. We employ a similarity grid to ensure that
new documents are roughly inserted within the proximity of sim-
ilar documents. The grid divides the 2D visualization domain into
rectangular cells with a given resolution. Each cell actively main-
tains a special keyword vector consisting of the average keyword
weights computed from the documents inside the cell. For a new
document, we first compute its similarity with this special keyword
vector of the grid cells to find the most similar one, and then place
this document at the center of that cell. An appropriate resolution
will provide a good acceleration while it cannot be too large due to
the extra overhead.

Table 4 shows the average number of simulation steps required
by 7100 documents with different grid sizes. A 50× 50 grid de-
creased the simulation steps per frame to 78% of the steps needed
without the grid. Meanwhile, the execution time was reduced with
the same ratio. We used a 50×50 grid for our experiments reported
in Table 2.



8.3 Discussion

The performance optimization makes our system applicable in a
monitoring setting for live streams. The New York Times news
are produced continuously, averaging 3 documents per hour and a
maximum of 8 documents per hour at the peak time. The minimum
interval between consecutive arrival is around 1 minutes. A capable
real-time visualization system should handle newly inserted items
faster than this minimum interval. From Table 2, the maximum
simulation time of the CPU computing is a few seconds. With GPU
acceleration, the handling time is further reduced to less than one
second. Therefore, our system can be effectively employed for this
news stream with many thousands of documents accommodated in
the display for analysis. Note that the capability is provided with an
ordinary consumer PC and graphics card. Our system is being up-
graded to handle even larger text streams with advanced GPUs. It is
important not to overwhelm the users with the flood of information.
Our system allows users to manipulate the simulation speed, and
users can pause the system and save clusters/documents for further
investigation. We will also utilize the unbalanced text streaming
speed in future improvement.

9 CONCLUSION

We have presented a new visual exploration system, STREAMIT,
for text streams. The system employs a physical framework to clus-
ter and dynamically analyze incoming documents. A new Dynamic
Keywords Importance helps users interactively manipulate the im-
portance of keywords for different visualization results. Topic mod-
eling is incorporated into our system and a triangulation based
clustering helps better visualization. Furthermore, the system is
equipped with powerful interactive tools and accelerated on con-
sumer GPUs, consequently providing fast simulation, immediate
response and convenient control.

In future work, we will integrate STREAMIT with online topic
modeling techniques to visualize text stream with frequently evolv-
ing topics. Furthermore, we will conduct user studies to further as-
sess the feasibility of the system. We also plan to apply STREAMIT
to a variety of real life applications.
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